
Web搜索



Web搜索 计算机科学与技术学院 2

目录

• Web搜索基础

– Web与文档集的不同

–近似重复检测

• Web采集

–采集器

–连接服务器

• 链接分析

–锚文本

–链接分析：Pagerank

–链接分析：HITS



Web搜索 计算机科学与技术学院 3

Web搜索引擎简史
• 基于关键词的搜索 1995-1997

– Altavista, Excite, Infoseek, Inktomi, Lycos

• 支付搜索: Goto (变成 Overture.com Yahoo!)

– 谁付的钱多就把谁放在前面：关键词会被拍卖

• 1998+: Google提出基于链接的排序
– 除了Inktomi外其他早期搜索引擎都灭亡

– 同期 Goto/Overture的年收入约10亿美元

• Google策略：独立于搜索结果，在页面的一侧添加相关付费广告
– Yahoo跟着学, 收购了 Overture (用作广告) and Inktomi (用作搜索)

• 2005+:  赢得了更多的搜索份额,  在欧洲和北美占统治地位

• 2009: Yahoo!和Microsoft进行合作，由Microsoft提供搜索技术，
Yahoo！自己负责自己的广告

• 2013：Bing在美国份额突破29.3% (Google: 66.7%)

• Google一家独大(中国百度)，未来走势如何？未知
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Google

付费广告

算法生成结果
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基本
全是
广告

百度
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用户会深入搜索结果多深？
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对搜索结果的经验性评价
• 页面质量良莠不齐

– 仅仅相关是不够的

– 质量也很关键
• 内容:  可信, 多样, 不重复, 容易维护

• 页面可读性:  显示得又快又好

• 无打扰:  无弹出广告等

• 正确率和召回率 Precision vs. recall

– 在互联网上,  召回率不再那么重要

• 什么比较重要？

– 头版头条的正确率(反例：百度)

– 全面 – 要能处理模糊的查询词
• 匹配结果比较少的时候召回率很重要

• 用户的认知可能非学术的，但是是有意义的
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Web文档集
• 没有设计/多人协作

• 分散的内容创作、链接,  民主化的发布

• 内容多样：包含真理、谎言、矛盾和大
量猜测 … 

• 异构：非结构化的(text, html, …),  半结
构化的 (XML,  有注释的照片),  结构化
的(数据库)…

• 规模比之前的文本集大得多…  但是其
中有很多重复的记录

• 增长– 最开始每几个月就翻一倍，现在
涨速下降但总量依然在扩大

• 内容可能是动态生成的
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Web  Results 1 - 10 of about 7,310,000 for miele. (0.12 seconds)  

Miele, Inc -- Anything else is a compromise 
At the heart of your home, Appliances by Miele. ... USA. to miele.com. Residential Appliances. 
Vacuum Cleaners. Dishwashers. Cooking Appliances. Steam Oven. Coffee System ...  
www.miele.com/ - 20k - Cached - Similar pages  

Miele 
Welcome to Miele, the home of the very best appliances and kitchens in the world.  
www.miele.co.uk/ - 3k - Cached - Similar pages  

Miele - Deutscher Hersteller von Einbaugeräten, Hausgeräten ... - [ Translate this 

page ] 
Das Portal zum Thema Essen & Geniessen online unter www.zu-tisch.de. Miele weltweit 
...ein Leben lang. ... Wählen Sie die Miele Vertretung Ihres Landes.  
www.miele.de/ - 10k - Cached - Similar pages  

Herzlich willkommen bei Miele Österreich - [ Translate this page ] 
Herzlich willkommen bei Miele Österreich Wenn Sie nicht automatisch 
weitergeleitet werden, klicken Sie bitte hier! HAUSHALTSGERÄTE ...  
www.miele.at/ - 3k - Cached - Similar pages  

 

 

 

 

  

Sponsored Links 
 
CG Appliance Express 
Discount Appliances (650) 756-3931 
Same Day Certified Installation 
www.cgappliance.com 
San Francisco-Oakland-San Jose, 
CA 
 
Miele Vacuum Cleaners 
Miele Vacuums- Complete Selection 
Free Shipping! 
www.vacuums.com 
 
Miele Vacuum Cleaners 
Miele-Free Air shipping! 
All models. Helpful advice. 
www.best-vacuum.com 
 

 
 

 
   

   

 

Web搜索基本流程
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小结：Web与文档集不同

• 规模：海量？动态？

• 相关性度量

–返回结果排序不仅仅依赖于q与d的相关性

–广告？用户认可？

• 重复？
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重复文档/近似重复文档

• 网上到处都是相同的内容

• 完全复制 Duplication

–可以通过指纹(fingerprints，比如64位Hash)来检测
精确匹配

• 大多数情况是近似重复 Near-Duplication

– E.g., 两份文本仅仅是日期不同

–通过编辑距离计算语法上的相似性

–通过一定的阈值来检测近似复制

• E.g., Similarity > 80% => 文档近似复制

• 通过阈值来检测是不可传递的 (AB近似，BC近似不能推
断AC近似)
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相似性计算

– 搭叠Shingles (N元词 N-Grams)

–给定正整数k及文档d的一个词项序列，可以定义文
档d的k-shingle为d中所有k个连续词项构成的序列。

– a rose is a rose is a rose → 4-Grams

a_rose_is_a

rose_is_a_rose

is_a_rose_is

a_rose_is_a …

• 直观上看，如果两个文档的shingle集合几乎一样，那么它们
就满足近似重复。
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Jaccard系数

• 在文档的Shingle集合上计算交集大小/并集大
小

• 计算所有文档对之间搭叠的精确交集是非常费
时而且难以处理的

• 使用一种聪明的方式从Shingles中选出一个子
集(素描sketch)来近似计算 (就是抽样Sample)

Jaccard系数：衡量重复度
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文档的素描(Sketch)

为每篇文档生成素描向量“sketch vector”(大小约为
~200)

• 相同向量个数 ≥ t (一般80%) 判定为近似near duplicate

• 对文档D, sketchD[i] 如下:

– 利用f函数把所有的搭叠shingles映射到{0...2m}得到f(s) (e.g.,

利用 fingerprinting为每个搭叠s计算一个m 位的哈希)

– 利用πi (对{0...2m}的随机置换函数，即对集合的对象进行随
机排序)对所有搭叠的哈希f(s)进行随机置换得到πi(f(s))，从
而形成一个新的随机序列

– 对上一步的随机置换序列选择 MIN{πi(f(s))}
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计算 Sketch[i] for Doc1
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测试 if Doc1.Sketch[i] = Doc2.Sketch[i] 

进行200次随机置换

选取最小值进行比较
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本质上是对shingle集合进行洗牌、抽样

A = B iff the shingle with the MIN value in the union of Doc1 

and Doc2 is common to both (i.e., lies in the intersection)

定理19-1: A = B发生的概率 =  交集大小/并集大小
(Size_of_intersection / Size_of_union)
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小结：近似重复检测

• Shingle算法的核心思想是将文件相似性问题转
换为集合的相似性问题

• 数量较大时，对shingle集合进行抽样，以降低
空间和时间计算复杂性

• Shingle抽样主要有三种方法，即Min-Wise，
Modm，Mins

– Mins技术先将shingle和整数集进行映射，然后从中
选择最小s个元素组成取样集合。

–此外，还可以使用shingle的hash值代表shingle进行
相似性计算，能够节省一定计算开销。
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Web  Results 1 - 10 of about 7,310,000 for miele. (0.12 seconds)  

Miele, Inc -- Anything else is a compromise 
At the heart of your home, Appliances by Miele. ... USA. to miele.com. Residential Appliances. 
Vacuum Cleaners. Dishwashers. Cooking Appliances. Steam Oven. Coffee System ...  
www.miele.com/ - 20k - Cached - Similar pages  

Miele 
Welcome to Miele, the home of the very best appliances and kitchens in the world.  
www.miele.co.uk/ - 3k - Cached - Similar pages  

Miele - Deutscher Hersteller von Einbaugeräten, Hausgeräten ... - [ Translate this 

page ] 
Das Portal zum Thema Essen & Geniessen online unter www.zu-tisch.de. Miele weltweit 
...ein Leben lang. ... Wählen Sie die Miele Vertretung Ihres Landes.  
www.miele.de/ - 10k - Cached - Similar pages  

Herzlich willkommen bei Miele Österreich - [ Translate this page ] 
Herzlich willkommen bei Miele Österreich Wenn Sie nicht automatisch 
weitergeleitet werden, klicken Sie bitte hier! HAUSHALTSGERÄTE ...  
www.miele.at/ - 3k - Cached - Similar pages  

 

 

 

 

  

Sponsored Links 
 
CG Appliance Express 
Discount Appliances (650) 756-3931 
Same Day Certified Installation 
www.cgappliance.com 
San Francisco-Oakland-San Jose, 
CA 
 
Miele Vacuum Cleaners 
Miele Vacuums- Complete Selection 
Free Shipping! 
www.vacuums.com 
 
Miele Vacuum Cleaners 
Miele-Free Air shipping! 
All models. Helpful advice. 
www.best-vacuum.com 
 

 
 

 
   

   

 

Web搜索基本流程
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Crawling picture

22

待采集 队列

未知

种子

爬取并解析了的

1 从已知的种子URL开始
2 获取页面并进行解析：1) 提取页面中包含的链接；2) 把链接放入URL队列
3 对队列中的URL，转2
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采集器必须具有的功能
• 礼貌性: Web服务器有显式或隐式的策略控制采集器的访问

– 只爬允许爬的内容、尊重 robots.txt

• 鲁棒性: 能从采集器陷阱中跳出，能处理Web服务器的其他恶
意行为

• 分布式: 可以在多台机器上分布式运行

• 可扩展性: 添加更多机器后采集率应该提高

• 性能和效率: 充分利用不同的系统资源，包括处理器、存储器
和网络带宽

• 优先抓取“有用的网页”

• 新鲜度: 对原来抓取的网页进行更新

• 功能可扩展性：支持多方面的功能扩展，例如处理新的数据格
式、新的抓取协议等



Web搜索 计算机科学与技术学院 24

礼貌性
• 显式的礼貌: 根据网站站长的说明，选择允许爬取的
部分进行爬取

– 按robots.txt说的做，如下面写法的意思是：任何robot都不
能 访 问 “ /yoursite/temp/” 开 头 的 网 址 , 除 了 名 叫
“searchengine”的:

• User-agent: *

• Disallow: /yoursite/temp/

• User-agent: searchengine

• Disallow:

• 隐式的礼貌:即使没有特别的说明，也不应该频繁的
访问同一个网站

• Robots.txt 源于1994年的协议，对爬取过程进行限制
http://www.robotstxt.org/orig.html 关于Robots.txt的说明
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Updated crawling picture

改进后的采集器

• 多个爬虫
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采集器基本架构

WWW

DNS

Parse

解析
Content

seen?

内容重复

Doc FP’s

文档指纹

Dup

URL

elim

去重

URL

set

URL Frontier

队列

URL

filter

robots

filters

过滤器

Fetch

抓取
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采集器分布化

• 在分布式系统环境下不同节点的不同进程中运
行多个采集线程

–地理位置分布的采集系统

• 把要采集的主机分配到每个节点

–通过Hash函数或其他针对性的策略

• 不同节点之间怎么通讯？
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节点间通信

• 通过过滤检测的URL需要发送到每个节点上进
行查重处理
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小结：采集器

• 礼貌性: Web服务器有显式或隐式的策略控制采
集器的访问

–只爬允许爬的内容、尊重robots.txt

• 鲁棒性: 能从采集器陷阱中跳出，能处理Web

服务器的其他恶意行为

• 分布式: 可以在多台机器上分布式运行

• ……
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WebWeb图

• 可以将整个静态Web看成是静态HTML网页通

过超链接互相连接而成的有向图，其中每个网
页是图的顶点，而每个超链接则代表一个有向
边。

• 包含两个顶点A、B的Web图，每个顶点代表一
个网页，Ａ网页上有一个超链接指向B。将所
有这样的顶点和有向边集合称为Web图。



Web搜索 计算机科学与技术学院 32

Web特性Web图特性
• 该有向图可能不是一个强连通(strongly connected)图，既从一

个网页出发，沿着超链接前进，有可能永远不会到达另外某个
网页。

• 将指向某个网页的链接称为入链接(in-link)，而从某个网页指
出去的链接称为出链接(out-link)。一个网页的入链接数目被称
为其入度(in-degree)，在一系列研究中得到的网页的平均入度
大概从8到15左右不等。同样，某个网页的出链接数目为其出
度(out-degree) 。

6个网页(分别以A到F标识)，网
页B的入度为3、出度为1。该
图不是强连通图，因为B不可
能到A



Web搜索 计算机科学与技术学院 33

Web特性Web图特性小世界网络
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Web特性Web图特性无标度网络
• 站点大小Site Sizes (以页面数量计算)服从power law 分布

– 跨越不同的规模

– a 在1.6-1.9之间

• 节点的度Connections per Node i服从power law 分布
– Study at Notre Dame University reported

– a = 2.45 for outdegree distribution

– a = 2.1 for indegree distribution

1
ai

网页数目
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连接服务器

• 支持Web图上的快速查询

–哪些URL指向给定的URL？

–给定的URL指向哪些URL？

• 在内存中存储了映射表

– URL到出链, URL到入链

• 应用

–采集控制

– Web图分析

• 连通性Connectivity, 采集优化

–链接分析Link analysis

Web图在计算机中如何表示？
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邻接表
• 假定每个网页都用唯一的整数来表示。

• 建立一个类似于倒排索引的邻接表(adjacency table)，

其每行都对应一个网页，并按照其对应的整数大小来
排序。

• 任一网页p对应的行中包含的也是一系列整数的排序
结果，每个整数对应的是链向p的网页编号。这张邻
接表允许应答类似于“哪些网页指向p？”的查询。

• 以同样的方法，可以建立所有p所指向的网页的邻接
表。
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小结：连接服务器

• 哪些URL指向给定的URL？

• 给定的URL指向哪些URL？

• 类似于倒排索引的邻接表
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Web是有向图

• 假设1: A到B的超链接表示A的作者对B的认可

• 假设2: 指向页面B的锚文本是对B的一个很好的
描述
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锚文本

• 超链接周围还有一些文本，这些文本通常被嵌
在<a>标签(称为锚)中

• 对于IBM如何在如下三者间进行辨别

– IBM’s 主页(基本上都是图片)

– IBM’s 版权声明页( ‘ibm’ 词频很高)

–竞争对手的垃圾信息页面(任意高词频)
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索引锚文本

• 在索引文档D的时候，也索引指向文档D的锚
文本。
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• 锚文本的使用有时候会产生一些有趣的副作
用-e.g.,Big Blue

–搜索Big Blue时会出现IBM主页，但是主页里面是
没有Big Blue这个词的，出现的原因是很多人提
到IBM的时候会使用这一绰号

• 可以根据锚文本所在页面的权威性来确定锚
文本的权重

– E.g., 我们认为cnn.com 和yahoo.com 的内容是权威
的，然后就相信它们的锚文本
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小结：锚文本

• Web上随处可见的一个现象是，很多网页的内
容并不包含对自身的精确描述。

• 因此，Web搜索者不一定要使用网页中的词项
来对网页进行查询，而使用锚文本。

• 锚文本周围窗口中的文本(extended anchor 

text)也可以当成锚文本一样来使用。
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Lary Page
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PageRank

• 对Web图中的每个节点赋一个0-1间的分值

• 查询词无关的排序

• 第一代版本

–使用链接的数目作为流行程度的最简单度量

• 两个基本的改进建议

–无向流行度

• 赋予每个页面一个分数：即出链数 + 入链数 (3+2=5)

–有向流行度

• 页面分数 = 入链数 (3)
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查询处理

• 先检索出所有满足文本查询词的页面 (例如
venture capital，互联网行业非常重要的给新网
站投钱的)

–然后把这些页面按照链接的流行度进行排序(前页
的两种计算方法)

–更复杂的 – 把链接流行度当作静态得分，结合文本
匹配的分数进行综合排序
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简单流行度的作弊

• 思考: 在如下两种计算方式下怎么作弊能使你
的网站得分更高？

–无向流行度:

• 页面分数 =  出链数 +  入链数

–有向流行度:

• 页面分数 = 入链数
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Pagerank打分

• 假设一个浏览者在网络上随机行走

–从一个随机的页面开始

–每一步从当前页等概率地选择一个链接，进入链接
所在页面

• 在稳定状态下，每个页面都有一个访问概率 –

用这个概率作为页面的分数
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• 当冲浪者在 Web 上进行节点间的随机游走时
，某些节点的访问次数会比其它节点更多。

• 直观地看，这些访问频繁的节点具有很多从
其它频繁访问节点中指向的入链接。

• PageRank的思路：

–在随机游走过程中访问越频繁的网页越重要。
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有缺陷

• 互联网上有很多Dead End

– Dead End即网页不存在出链，那该怎么办？

–这样就没法计算长期游走情况下的访问概率了！
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随机跳转(Teleporting)

• 遇到dead end时

• 随机跳转到一个页面，如果网页总数是N，那么随机跳转的
概率是1/N

• 在非dead end时

– 以α (值较小，一般10%或20%)的概率跳转到一个随机页面

– 以1- α的概率从页面的出链中选择一个

• 随机跳转的结果

– 不会再困在一个地方

– 将会有一个比率表示所有网页在长期的情况下被访问的概
率

那么怎么计算这个概率呢？
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PageRank

• 当冲浪者采用这种混合过程（随机游走 + 随机
跳转）时，他就会以一个稳定的概率 π(v)访问
每个节点 v，其中 π(v)依赖于

– (i) Web 图的结构；

– (ii) α 的值。

• 称 π(v)为 v 的 PageRank值

• 将采用马尔科夫链(离散时间随机过程discrete-

time stochastic process)理论来说明
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Markov链
• 一个Markov链有 N 个状态(N个Web网页), 以及一个

N×N 的转移概率矩阵 P

• 每一步，只能处在一个状态

• 1<= i, j <= N，转移概率矩阵的Pij 给出了从状态i到下
一个状态j的条件转移概率

• P中每一行的元素之和为1，即从该页面跳转到所有出
链的概率之和是1

• 满足上述性质的非负矩阵被称为随机矩阵(Stochastic

Matrix)。重要性质：最大特征值是1，与该特征值对
应的有一个主左特征向量(Principal Left Eigenvector)

。

1
, 1

N

ijj
i P


 
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• 马尔科夫链中，下一个状态的分布仅仅依赖
于当前的状态，而和如何到达当前状态无关

• 该马尔科夫链的转移概率矩阵P为：
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概率向量
• 马尔科夫链的状态概率分布可以看成一个概率向量

(probability vector)，其中的每个元素都在[0,1]之间，
并且所有的元素之和为1(一行)。

• 如果一个N维的概率向量的每个分量对应马尔科夫链

中的一个状态，那么该向量就可以被看成是在状态上
的一个概率分布。(一行)

• 将Web图上的一个随机冲浪过程看成是马尔科夫链，

其中的每个状态对应一个网页，而每个转移概率代表
从一个网页跳转到另外一个网页的概率

• 一个概率(行)向量 代表随机游走到
哪一个地方

1
1

N

jj
x




1x  ( ,  , )Nx x 
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邻接矩阵A概率转移矩阵P

• Web图的邻接矩阵A可以如下定义：如果存在网页i到
网页j的一条链接，那么Aij=1，否则 Aij=0。

– 如果某一行没有1(即没有出链)，则用1/N代替每个元素(随
机选择其它任一网页)。

– 其它行的处理如下
• 用每行中的1的个数去除每个1，因此如果某行有3个1，则每个1用

1/3代替(归一化)；

• 上面处理后的结果矩阵乘以1−α；

• 对上面得到的矩阵中的每个元素都加上α * 1/N。

1 2 3
1 0 1 0

2 1 0 1

3 0 1 0

A

 
 


 
  
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1 2 3
1 0 1 0

2 1 0 1

3 0 1 0

A

 
 


 
  
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概率向量的变化

• 在当前这一步的概率向量是 那
么下一步的概率向量是多少?

• 回想一下，转移概率矩阵P告诉我们在状态i如
何转移到其它状态

• 下一步的概率向量就是

• 两步之后 , 然后 ，….

• “最终”意味着当k很大时,

• 最终访问频率收敛于固定的、稳态概率

1x  ( ,  , )Nx x 

xP
2xP

3xP

x k P


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遍历Markov链

• 满足遍历性的必要条件：

–不可约(irreducibility)，任意两个状态之间都存在非
零概率转移序列

–对任意的初始状态，经过有限时间T0的跳转后，在
T>T0 时刻处于其它任意状态的概率都大于0

–非周期性：不存在两个状态子集之间的循环往复

• 对任意的遍历Markov链，都存在一个唯一的稳
态概率向量 ，它是P的主左特征向量。

–稳态概率分布

–该访问率是与起点无关的

– 是结点i的稳态概率



( ) 1...i i N 
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计算a的一种方法：幂迭代(power iteration)

• 回忆一下，不管从什么地方开始，最终都会到
达稳定状态

• 从任意分布开始 (例如 )

• 一步之后，到达

• 两步之后 , 然后 ，….

• “最终”意味着当k很大时，

• 算法:  给 乘上 P 的k次方，k不断增加，直到
乘积看起来已经稳定 (比如比较 与 之
间的差值)



x  (1,  ,0) 

2xP
3xP

x k P

x

x k
P -1x k

P

xP
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稳态概率

• 稳态看起来就像一个概率向量

– 就是在状态 i 的概率

–在上面这个例子中, and 

• 怎么计算稳态概率？

–假设 表示稳态概率

–如果我们当前状态是 ，那么下一步的分布应该
是

–因为已经是稳态了，所以

• 解矩阵等式可以得到

• 是P 的主左特征向量(对应于P最大特征值的特征向量)

• 转移概率矩阵的最大特征值是1

1=( ,..., )N  

i

1

1

4
  2

3

4
 

1=( ,..., )N  


P

 P



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PageRank小结

• 预处理

– Web图邻接矩阵A概率转移矩阵 P

–由P计算

–元素 是一个0和1之间的数: 即页面 i 的PageRank

• 查询处理

–检索满足查询要求的页面

–按PageRank排序

–排序与查询词是无关的



i
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几点事实

• Google确实用了Pagerank,  但是它排序并不仅
仅依靠PageRank

–还用了很多复杂的特征

–大量使用基于机器学习的排序

• Pagerank对于爬虫的爬取策略还是很有用的
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目录

• Web搜索基础

– Web与文档集的不同

–近似重复检测

• Web采集

–采集器

–连接服务器

• 链接分析

–锚文本

–链接分析：Pagerank

–链接分析：HITS
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Jon Kleinberg
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超链导向的主题搜索

• Hyperlink- Induced Topic Search (HITS)

• 对每个网页给出两个得分：一个得分被称为
hub值，另外一个被称为authority值

• 作为查询的响应，与排序过的相关网页列表不
同，可以找到两个互相联系的页面集合

–导航页Hub page很好的指向某一主题的列表

• e.g., “Bob’s list of cancer-related links.”

–权威页Authority page在针对某一主题的好Hub页中
经常出现

• 相对于寻找特定页面，更加适合于泛主题搜索

– E.g., wish to learn about leukemia(白血病)



Web搜索 计算机科学与技术学院 69

导航Hubs 和权威Authorities

• 针对某一主题的好Hub页会指向很多关于这个
主题的Authority页面

• 关于某一主题的好Authority页面会被很多针对
这一主题的好Hub页指向

• 循环定义Circular definition – 导致可以迭代求
解页面的Hub值和Authority值
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HITS步骤：确定基本集

• 给一个查询词 (如 browser),  使用一个文本索引
取出所有包含 browser  的页面称为根集合. 

• 再在根集合中添加满足下面任一要求的页面

–指向根集合中的一个页面

–被根集合中的一个页面指向的页面

• 得到的集合称为基本集 base set.
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HITS步骤：精选出Hub页和Authority页

• 对于基本集中的每一个页面x计算Hub分h(x)和
Authority分a(x)

• 初始化:  所有的 x, h(x)1; a(x)1;

• 迭代更新 h(x), a(x);

• 迭代之后

–输出具有最高 h() 的页面作为Top Hub页

–最高 a() 的页面作为Top Authority页
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HITS步骤：迭代更新
• 对所有 x 重复如下步骤:

• 先重新计算所有网页的hub值，接着根据更新后的
hub 值又来计算所有网页的authority值

• 接着又根据更新后的authority值重新计算所有网页的
hub值，如此可以反复迭代下去

• 为了避免h()和a()太大, 每次迭代之后都可以按一定比

例缩小。缩放并不会影响最后结果：因为只关心相对
的分数
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应该迭代多少次？

• 宣称:  迭代一些次数后分数会收敛

• 实际上, 适当的缩放,  h() 和 a() 会陷入一个稳
定状态!

• 只需要 h() 和 a() 的相对顺序，而不需要它们
的值

• 实践中发现,  大概5次迭代后就会稳定
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小结：HITS

• 超链导向的主题搜索

Hyperlink-Induced Topic Search (HITS)

• 对每个网页给出两个得分：一个得分被称为
hub值，另外一个被称为authority值

• HITS步骤

–确定基本集

–精选出Hub页和Authority页

–迭代更新

• h是AAt的特征向量，a是 AtA的特征向量


