
索引构建与压缩
Index Construction
Index Compression

索引构建

索引构建与压缩 计算机科学与技术学院 3

索引构建

• 索引构建，Index Construction 或 Indexing

• 构建索引的程序或计算机称倒排器（索引器）
Indexer

索引构建与压缩 计算机科学与技术学院 4

• 思考如下问题：

–怎样建立一个索引？

–对于给定的计算机内存，可以采用怎样的索引构
建策略?

索引构建与压缩 计算机科学与技术学院 5

索引构建

• 硬件基础

• 语料库介绍

• 索引构建算法

• 分布式索引构建

• 动态索引

索引构建与压缩 计算机科学与技术学院 6

硬件基础：存储能力

• IR系统的服务器通常“数GB”甚至“数百GB

”的内存。

• 其可用磁盘空间大小一般比内存大小高几个(2-

3)数量级(TB级别)。

• 容错控制代价非常昂贵：使用许多台常规服务
器要比使用一台容错服务器便宜得多。

索引构建与压缩 计算机科学与技术学院 7

硬件基础：计算机I/O能力(2007)

• 访问内存数据比访问磁盘数据快得多。

• 磁盘寻道：磁头移到数据所在的磁道需要一段
时间，寻道期间并不进行数据的传输。

• 因此：从磁盘到内存传输一个大数据块要比传
输很多小的数据块快的多。

• 磁盘读写操作是基于块的：从磁盘读取一个字
节和读取一个数据块所耗费的时间可能一样多
。

• 块大小：8KB – 256KB

索引构建与压缩 计算机科学与技术学院 8

典型硬件性能参数(2007年水平)

索引构建与压缩 计算机科学与技术学院 9

索引构建

• 硬件基础

• 语料库介绍

• 索引构建算法

• 分布式索引构建

• 动态索引

索引构建与压缩 计算机科学与技术学院 10

RCV1语料库:样例文档集
• 为了阐述本课程的许多要点，《莎士比亚全集》作为
样例文档集远远不够。

• Reuters-RCV1文档集

– 不是真正的足够大，但是公开的，一个更为合理的样例。

– 将使用路透社的RCV1文档集作为“可扩展的索引构建算法
”的样例。

– 该文档集由一年的路透社新闻组成(1995-1996)。

索引构建与压缩 计算机科学与技术学院 11

Reuters-RCV1语料：统计数据

符号 含义 值

N 文档总数 800 000

Lave 每篇文档的平均词条(Token)数目 200

M 词项(Term)总数 400 000

每个词条的平均字节数(含空格和标点符号) 6

每个词条的平均字节数(不含空格和标点符
号)

4.5

每个词项的平均字节数 7.5

T 词条(Token)总数 160 000 000

200*800000
词条就是tokenize后的
而词项是真正索引的，包括单复数变化，去停用词等等

索引构建与压缩 计算机科学与技术学院 12

Reuters-RCV1语料：索引构建中的临时文件

• 文档ID需32bit=4Byte

• 词条ID需32bit (总共约1亿
词条)

• 存储所有的“词条ID-文档
ID”需要

– 约100,000,000 * (32+32) =

6,400,000,000bits =

800,000,000Bytes = 0.8GB

存储空间

• 需要对0.8GB的ID对进行
排序！！！

• 而实际语料库要比RCV1更
大

索引构建与压缩 计算机科学与技术学院 13

扩展索引构建

• 在内存中进行索引构建并不能扩展。

• 怎样才能对大型的语料库构建索引？

• 考虑到我们刚刚了解的硬件约束条件。。。

–内存，硬盘，速度等等。

索引构建与压缩 计算机科学与技术学院 14

基于排序的索引构建算法
• 在建立索引过程中，需要依次分析所有的文档。

– 索引构建过程中，不能很容易地利用压缩技巧(即使可以，
也会非常复杂)。

• 只有分析完所有的文档，最终的倒排记录表才会完整

• 每一个<词项，文档，频数>对占用12字节，对于大型
语料库则需要非常大的空间。

• 在RCV1文档集中，倒排记录总数T=100,000,000

– 仍然可以在内存中对所有词项ID-文档ID对进行排序。

– 但是通常的语料库会大很多，例如：《纽约时报》提供了
一份包含超过150年新闻的索引文件。

• 因此：需要在硬盘中存储中间的结果。

索引构建与压缩 计算机科学与技术学院 15

索引构建

• 硬件基础

• 语料库介绍

• 索引构建算法

• 分布式索引构建

• 动态索引

索引构建与压缩 计算机科学与技术学院 16

索引构建算法

• 基于块的排序索引构建算法

–面向静态文档集

–单机

• 内存式单遍扫描索引构建算法

• 分布式索引构建算法

• 动态索引构建算法

索引构建与压缩 计算机科学与技术学院 17

在硬盘中采用同样的算法？

• 对于大型的语料库，能在硬盘而不是内存中采
用同样的索引构建算法吗？

• 答案是“NO”：在硬盘中排序T=100,000,000条
记录太慢了——需要很多次的磁盘寻道。

• 需要一个外部排序算法。

索引构建与压缩 计算机科学与技术学院 18

瓶颈

• 依次对文档进行分析并建立倒排记录项<Term,

DocID>。

• 根据词项对所有倒排记录项进行排序

–然后在词项内再根据文档ID进行二次排序。

• 由于需要随机的磁盘寻道，在硬盘中进行排序
非常慢——必须排序T=1亿条记录。

索引构建与压缩 计算机科学与技术学院 19

基于块的排序索引算法
BSBI: Blocked sort-based Indexing

• 基本思想

–对每一个块都生成倒排记录，并排序，写入硬盘

–然后将这些块合并成一个长的排好序的倒排记录。

索引构建与压缩 计算机科学与技术学院 20

BSBI(基于块的排序索引算法)

(需要较少的磁盘寻道次数)

• 每条数据占用12字节(4+4+4) (词项，文档，频数)

• 这些数据是在分析文档时生成

• 需要对100M条这样12字节的数据进行排序

• 定义一个块~10M大小的数据

– 可以很容易地加载数个这样的块数据到内存中

– 开始加载10个这样的块数据

• 100M数据的排序排序10块10M的数据

• 必须在硬盘上直接排序在内存中排序(10M)

• 带来的问题：需要合并10个排序后的结果

索引构建与压缩 计算机科学与技术学院 21

BSBI(基于块的排序索引算法)

• 在内存中处理,累积放满固定的块,排序后写入硬盘fi

• 合并所有块索引文件fi成一个

写满块

构建块索引

写块索引文件

合并索引文件

索引构建与压缩 计算机科学与技术学院 22

如何合并排序结果？

• 可以进行二分合并，产生一个log210, 4层的合
并树。

• 在每一层中，读入对应的块文件到内存中，合
并倒排记录表，合并结果写回磁盘中。

索引构建与压缩 计算机科学与技术学院 23

如何合并排序结果？

• 一个n-路的合并会更加高效，可以同时读取所
有的数据块。

• 内存中维护

–为10个块准备的读缓冲区

–一个为最终合并索引准备的写缓冲区

–这样就不会因为硬盘寻道而浪费大量的时间了。

索引构建与压缩 计算机科学与技术学院 24

基于BSBI排序的算法存在的问题

• 假设：能够将词典存入内存中。

• 需要该词典(动态增长)去查找任一词项和词项
ID之间的对应关系。

• 事实上，可以采用<词项，文档ID>对来代替<

词项ID，文档ID>对。

–每个词项的平均字节数=7.5

• …但是中间文件会变的非常的大。

（一个可拓展的，但效率非常低的索引构建算
法）

索引构建与压缩 计算机科学与技术学院 25

SPIMI:内存式单遍扫描索引算法

• SPIMI:Single-pass in-memory indexing

• 核心思想1：为每个块单独生成一个词典—不
需要维护全局的<词项，词项ID>映射表。

• 核心思想2：不进行排序。有新的<词项，文档
ID>对时直接在倒排记录表中增加一项。

• 根据这两点思想，可以为每个块生成一个完整
的倒排索引。

• 然后将这些单独的索引合并为一个大的索引。

索引构建与压缩 计算机科学与技术学院 26

SPIMI：压缩

• 压缩技术将会使SPIMI算法更加高效。

–压缩词项

–压缩倒排记录表

• 见下一部分：索引压缩

索引构建与压缩 计算机科学与技术学院 27

索引构建

• 硬件基础

• 语料库介绍

• 索引构建算法

• 分布式索引构建

• 动态索引

索引构建与压缩 计算机科学与技术学院 28

分布式索引构建 Distributed indexing

• Web大规模的索引构建

–必须使用一个分布式的计算机集群

• 这些计算机都是故障频发的

–可能会在任意时刻失效

• 如何开发这样一个计算机集群？

索引构建与压缩 计算机科学与技术学院 29

Google数据中心

• Google数据中心主要是由商用计算机组成

• 数据中心分布在世界各处

• 估计：总共一百万台服务器

–（Estimated by prof. Koomey from Stanford 2011）

• 估计：Google每季度就会安装100,000台服务器

–根据它每年2-2.5亿美元的开销

索引构建与压缩 计算机科学与技术学院 30

Google数据中心

• 假如在一个包含1000个节点的非容错系统中，
每个节点的正常运行概率为99.9%，那么这个
系统的正常运行概率为多少？

–答案是：36.8% (99.9%1000)

• 可以试着计算一下：对于一个一百万台计算机
的集群，每分钟会有多少台服务器宕机。

索引构建与压缩 计算机科学与技术学院 31

分布式索引构建

• 利用集群中的主控节点来指挥索引构建工作。

–假设主控节点是“安全”的。

• 将索引构建过程分解成一组并行的任务。

• 主控计算机从集群中选取一台空闲的机器并将
任务分配给它。

索引构建与压缩 计算机科学与技术学院 32

并行任务

• 采用两组不同的并行任务

– Parsers 分析器

– Inverters 倒排器

• 首先，将输入文档集分割成n个数据片

–每个数据片就是一个文档子集(与BSBI/SPIMI算法
中的数据块相对应)

索引构建与压缩 计算机科学与技术学院 33

文档集分割

• 两种分割方法

–基于文档的分割

–基于词项的分割

索引构建与压缩 计算机科学与技术学院 34

分析器 Parsers

• 主节点将一个数据片分配给一台空闲的分析服
务器

• 分析器依次读取文档并生成 <词项,文档>对

• 分析器将这些<词项,文档>按照词项分成j个段

• 每一段是按照词项首字母划分的一个区间

– (例如：a-f, g-p, q-z)-这里 j=3

• 然后可以进行索引的倒排

索引构建与压缩 计算机科学与技术学院 35

倒排器Inverters

• 对于一个词项分区，倒排器收集所有的<词项,

文档>对 (也就是“倒排记录”)

• 排序，并写入最终的倒排记录表

索引构建与压缩 计算机科学与技术学院 36

数据流

索引构建与压缩 计算机科学与技术学院 37

MapReduce

• 刚刚所讲的索引构建算法是MapReduce的一个
应用

• MapReduce(Dean and Ghemawat 2004)是一个稳
定的并且概念简单的分布式计算架构

–不需要自己再对分布式部分书写代码

• Google索引系统(ca.2002)由各个不同的阶段组
成，每个阶段都是MapReduce的一个应用

索引构建与压缩 计算机科学与技术学院 38

• 索引构建只是其中的一个阶段

• 另一个阶段是：将基于词项划分的索引表转
换成基于文档划分的索引表

–基于词项划分的：一台机器处理所有词项的一个
子区间

–基于文档划分的：一台机器处理所有文档的一个
子区间

• 在本课程的Web搜索部分会讲到，大部分搜
索引擎都是采用基于文档划分的索引表

–优点：更好的负载平衡等等

索引构建与压缩 计算机科学与技术学院 39

采用MapReduce的索引构建架构
• Map和Reduce函数的架构

– Map:输入list(k, v) Reduce:(k, list(v))输出

• 索引构建中上述架构的实例化

– Map: Web文档集 list(词项ID,文档ID)

– Reduce: (<词项ID1, list(文档ID)>, <词项ID2,list(文档
ID)>,…)  (倒排记录表1,倒排记录表2,…)

• 教材中索引构建的例子

– Map: d1: C came, C c’ed. d2: C died. 

<C,d1>,<came,d1>,<C,d1>, <c’ed,d1>, <C,d2>,<died,d2>)

– Reduce: (<C,(d1,d1, d2)>,<died,(d2)>,<came,(d1)>,<c’ed,(d1)>)

(<C,(d1:2,d2:1)>,<died,(d2:1)>,<came,(d1:1)>,<c’ed,(d1:1)>)

索引构建与压缩 计算机科学与技术学院 40

一个简单的例子：Map阶段
莎士比亚《哈
姆雷特》

一个文档

• To be, or not

to be: that is

the question

• the head is

not more

native to the

heart

• brevity is the

soul of wit

<key,value>

索引构建与压缩 计算机科学与技术学院 41

一个简单的例子：Reduce阶段

索引构建与压缩 计算机科学与技术学院 42

索引构建

• 硬件基础

• 语料库介绍

• 索引构建算法

• 分布式索引构建

• 动态索引

索引构建与压缩 计算机科学与技术学院 43

动态索引构建方法

• 迄今为止，我们都假设文档集是静态的

• 但文档集通常不是静态的

–文档会不断的加入进来

–文档也会被删除或者修改

• 这就意味着词典和倒排记录表需要修改

–对于已在词典中的词项更新倒排记录

–新的词项加入到词典中

索引构建与压缩 计算机科学与技术学院 44

（1）最简单的索引更新方法

• 周期性索引重构

–建立新索引的同时，旧索引继续工作

• 条件

–更新次数不是很多

–能够接受对新文档检索的一定延迟（重构之前新文
档检索不到）

–有足够的资源进行重构

索引构建与压缩 计算机科学与技术学院 45

（2）方法2

• 维护一个大的主索引

• 新文档信息存储在一个小的辅助索引中(位于
内存)

• 检索可以同时遍历两个索引并将结果合并

• 删除

–文档的删除记录在一个无效位向量(invalidation bit

vector)中

–在返回结果前利用它过滤掉已删除文档

• 定期地，将辅助索引合并到主索引中

• 文档更新通过先删除后插入方式实现

索引构建与压缩 计算机科学与技术学院 46

主索引与辅助索引存在的问题
• 频繁的合并 — 带来很大的开销

• 合并过程效率很低

– 如果每个词项的倒排记录表都单独成一个文件，那么合并
主索引和辅助索引将会很高效

– 合并将是一个简单的添加操作

– 但需要非常多的倒排文件 — 对文件系统来说是低效的

• 以后课程中都假设：索引是一个大的文件

• 现实中：往往在上述两种极端机制中取一个折中方
案

(例如，对非常大的索引记录表进行切分；并对那些长度为1

的索引记录表进行合并)

索引构建与压缩 计算机科学与技术学院 47

对数合并
• 维护一系列的索引I0,I1,I2,…，每个都是前一个的两倍
大小20*n, 21*n, 22*n, …。n是辅助索引Z0的大小

• 辅助索引Z0存储在内存中

• 将较大的那些(I0,I1,…)存储在磁盘中

• 当Z0达到上限n时，将它写入磁盘的I0中(此时I0=20*n)

• 当Z0下一次达到上限时，它会和I0合并，生成Z1 (大小
21*n)

– 此时，如果I1不存在，存储到I1中

– 如果I1已存在，则Z1与I1合并成Z2 (大小22*n)

– 此时，如果I2不存在，存储到I2中

– 如果I2已存在，则Z2与I2合并成Z3 (大小22*n)

– 以此类推…

索引构建与压缩 计算机科学与技术学院 48

拥有多个索引产生的问题

• 全局统计信息很难得到

• 例如：对于拼写校正算法，得到几个校正的备
选词后，选择哪个呈现给用户？

–可以返回具有最高选中次数的那些

• 对于多个索引和无效位向量，怎样维护那些拥
有最高次数的结果？

–一个可能的方法：除了主索引的排序结果，忽略其
它所有的索引

• 事实上，采用对数合并方法，信息检索系统的
各个方面，包括索引维护，查询处理，分布等
等，都要复杂的多

索引构建与压缩 计算机科学与技术学院 49

搜索引擎中的动态索引

• 现在所有的大型搜索引擎都采用动态索引

• 它们的索引经常增加和改变

–新的产品、博客，新的Web网页

• 但是它们也会周期性地从头开始重新构建一个
全新的索引

–查询处理将会转到新索引上去，同时将旧的索引删
除

索引构建与压缩 计算机科学与技术学院 50

总结—索引构建
• 基于排序的索引构建算法

– 它是一种最原始的在内存中进行倒排的方法

– 基于块的排序索引算法BSBI

• 合并排序操作对于基于磁盘的排序来说很高效(避免寻道)

• 内存式单遍扫描索引构建算法SPIMI

– 没有全局的词典
• 对每个块都生成单独的词典

– 不对倒排记录进行排序
• 有新的倒排记录出现时，直接在倒排记录表中增加一项

• 采用MapReduce的分布式索引构建算法

• 动态索引构建算法：多个索引，对数合并

• 搜索引擎：周期性索引重构

索引压缩

索引构建与压缩 计算机科学与技术学院 52

提纲

• 压缩

• 词项统计量

• 词典压缩

• 倒排记录表压缩

索引构建与压缩 计算机科学与技术学院 53

索引压缩

• 统计信息(对RCV1语料库)

–词典和倒排记录表将会有多大？

• 词典压缩

• 倒排记录表压缩

索引构建与压缩 计算机科学与技术学院 54

为什么要压缩(一般来说)？

• 节省磁盘空间

–省钱

• 提高内存的利用率

–提高速度

• 加快数据从磁盘到内存的传输速度

– [读取压缩数据][解压缩]比直接[读取未压缩的数据]

快

–前提：解压缩算法要很快

• 目前所用的解压缩算法在现代硬件上运行相当快

索引构建与压缩 计算机科学与技术学院 55

为什么要压缩倒排索引？

• 词典

–压缩的足够小以便能够放入内存中

–当词典足够小时，也可以在内存中存储一部分倒排
记录表

• 倒排记录文件

–减少所需的磁盘空间

–减少从磁盘读取倒排记录文件所需的时间

–大的搜索引擎在内存中存储了很大一部分倒排记录
表

• 压缩可以在内存中存储的更多

• 将设计各种基于IR系统的压缩架构

索引构建与压缩 计算机科学与技术学院 56

提纲

• 压缩

• 词项统计量

• 词典压缩

• 倒排记录表压缩

56

索引构建与压缩 计算机科学与技术学院 57

回顾 Reuters-RCV1语料库

符号 含义 值

N 文档总数 800 000

Lave 每篇文档的平均词条(Token)数目 200

M 词项(Term)总数 400 000

每个词条的平均字节数(含空格和标
点符号)

6

每个词条的平均字节数(不含空格和
标点符号)

4.5

每个词项的平均字节数 7.5

T 词条(Token)总数 160 000 000

索引构建与压缩 计算机科学与技术学院 58

索引参数 vs. 索引内容
不同词项 无位置信息倒排记录 词条

词典 无位置信息倒排表 包含位置信息的倒排
表

数目 ∆% T% 数目(K) ∆% T% 数目(K) ∆% T%

未过滤 484,494 109,971 197,879

无数字 474,723 -2 -2 100,680 -8 -8 179,158 -9 -9

大小写转换 391,523 -17 -19 96,969 -3 -12 179,158 0 -9

30个停用词 391,493 0 -19 83,390 -14 -24 121,858 -31 -38

150个停用词 391,373 0 -19 67,002 -30 -39 94,517 -47 -52

词干还原 322,383 -17 -33 63,812 -4 -42 94,517 0 -52

近似是0
30个与391,523个相比

因考虑位置信息，所以不管
大写，小写，都依然存在

∆%表示和前一行相比数目的减少比率，而“停用词”均使用“大小写转换”那行作为
基准。T%表示以“未过滤”为基准。
词条的数目实际上等于倒排记录表中的位置信息个数

索引构建与压缩 计算机科学与技术学院 59

有损(Lossy) vs. 无损(Lossless)压缩

• 无损压缩：压缩之后所有原始信息都被保留

–在IR系统中常采用无损压缩

• 有损压缩：丢掉一些信息

• 一些预处理步骤可以看成是有损压缩：大小写
转换，停用词剔除，词干还原，数字去除

• 第7章：那些削减的倒排记录项都不太可能在
查询结果的前k个列表中出现。

–对于前k个返回结果来说，这几乎是无损的

• 有损还是无损与需求相关！！

索引构建与压缩 计算机科学与技术学院 60

词汇量 vs. 文档集大小

• 词项的词汇量有多大？

–也就是说，有多少个不同的词？

• 可以假定一个上界吗？

–实际上并不可以：长度为20的不同单词至少有
7020=1037个

• 实际中，词汇量会随着文档集大小的增大而增
长

–尤其当采用Unicode编码时

索引构建与压缩 计算机科学与技术学院 61

• Heaps定律：M = kTb

– M是词项的数目，T是文档集中词条的个数

–参数k和b的典型取值为：30≤k≤100 和 b≈0.5

• 词汇量大小M和文档集大小T在对数空间中，
存在着斜率为½的线性关系

–在对数空间中，这是这两者之间存在的最简单的
关系

–这是一个经验发现(“empirical law”)

Heaps定律是Heaps在1978年一本关于信息挖掘的专著

中提出的。事实上，他观察到在语言系统中，不同单
词的数目与文本篇幅（所有出现的单词累积数目）之
间存在幂函数的关系，其幂指数小于1。

索引构建与压缩 计算机科学与技术学院 62

Reuters RCV1上的Heaps定律
• 词汇表大小M 是文档集规模

T的一个函数

• 图中通过最小二乘法拟合出
的直线方程为：

log10M = 0.49 ∗ log10T + 1.64

• 于是有：

• M = 101.64T0.49

• k = 101.64 ≈ 44

• b = 0.49

62

M是词项的数目，T是文档集中词条的个数

索引构建与压缩 计算机科学与技术学院 63

拟合 vs. 真实

• 例子: 对于前1,000,020个词条， 根据Heaps定律
预计将有38,323个词项:

44 × 1,000,0200.49 ≈ 38,323

• 实际的词项数目为38,365，和预测值非常接近

• 经验上的观察结果表明，一般情况下拟合度还
是非常高的

索引构建与压缩 计算机科学与技术学院 64

Zipf定律
• Heaps定律提供了对文档集中词汇量的估计

• 我们还想了解词项在文档中的分布情况

• 在自然语言中，只有很少一些非常高频的词项，而其
它绝大部分都是很生僻的词项。

• Zipf定律：排名第i多的词项的文档集频率与1/i 成正
比

– ，K是一个归一化常数

– cfi是文档集频率：词项ti在文档集中出现的次数

• Zipf定律是Zipf在1949年的一本关于人类定位的最小作用原理

的书中首先提出的，最令人难忘的例子是在人类语言中，如果
以单词出现的频次将所有单词排序，用横坐标表示序号，纵坐
标表示对应的频次，可以得到一条幂函数曲线。这个定律被发
现适用于大量复杂系统。

1
i

K
cf

i i
 

索引构建与压缩 计算机科学与技术学院 65

Zipf定律推论

• 如果最高频的词项(the)出现了cf1次

• 那么第2高频的词项(of)出现了cf1/2次

• 第3高频的词项(and)出现了cf1/3次

• 等价的：cfi = K/i 中K是归一化因子，所以

– log cfi = log K - log i

– log cfi和log i之间存在着线性关系

• 另一个幂定律关系

索引构建与压缩 计算机科学与技术学院 66

Reuters-RCV1文档集上的Zipf定律

• 拟合度不是非常高，但是最重要的是如下关键
性发现：高频词项很少，低频罕见词项很多

出现频率

排名

索引构建与压缩 计算机科学与技术学院 67

提纲

• 压缩

• 词项统计量

• 词典压缩

• 倒排记录表压缩

67

索引构建与压缩 计算机科学与技术学院 68

为什么要压缩词典？

• 搜索从词典开始

• 需要将词典放入内存中

• 和其他应用程序共享内存资源

• 手机或者嵌入式设备通常只有很小的内存

• 即使词典不存入内存中，也希望它能比较小，
以便搜索能快速启动

• 所以，压缩词典非常重要

索引构建与压缩 计算机科学与技术学院 69

词典存储

• 定长数组存储

• 400,000词项×28B/词项 = 11.2 MB

索引构建与压缩 计算机科学与技术学院 70

定长方法存储词项浪费空间

• 词项那一列大部分的字节都被浪费 —为每个词
项分配了20字节的固定长度。

–但仍然不能解决“supercalifragilisticexpialidocious”

和“hydrochlorofluorocarbons”

• 书面英文中单词的平均长度约为4.5个字符

• 英语中平均的词典词项长度为8个字符

–平均会有12个字符的空间浪费

• 较短的词项支配了词条的数目但是并不是典型
的平均值，即较短的词项占绝大多数

索引构建与压缩 计算机科学与技术学院 71

压缩词项列表：将词典看成单一字符串
（ Dictionary-as-a-String ）

• 将所有词项存储为一个长字符串：

–指向下一词项的指针同时也标识着当前词项的结束

–期望节省60%的词典空间

英语中平均的词典词项长度为8个字符

4B 4B 3B

空间：400K ×(4+4+3+8) = 7.6MB (固定长度11.2MB)

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

文档频率 倒排表指针 词项指针

33

29

44

126

总字符串长度=

400K * 8B = 3.2MB

指针寻址空间：3.2M

指针长度: log23.2M =

22bits ≈ 3Bytes

索引构建与压缩 计算机科学与技术学院 72

按块存储（Blocking）
• 每k个词项分成一块，只保留第一个指针

– 下面的例子：k=4

• 需要存储词项长度(额外1字节)

每个词项新增
1B

非块：4×3B=12B
块：3B + 4B = 7B

减少了0.5MB的空间，从7.6M压缩到7.1MB
讨论：k取多少合适？大？小？

索引构建与压缩 计算机科学与技术学院 73

未压缩词典的搜索

• 假设词典中每个词项被查
询的概率相同(实际中并非
如此！)，

• 平均比较次数=

(1+2*2+4*3+4)/8=2.6

1

2

3

4

索引构建与压缩 计算机科学与技术学院 74

按块存储方式下的词典搜索

• 二分查找只能在块外进行

–然后在块内进行线性查找(串行查找)得到最后的词
项位置

• 块大小为4(二分树)，平均比较次数
=(1+2*2+2*3+2*4+5)/8 = 3

1

2 3 4 5

2 3 4

索引构建与压缩 计算机科学与技术学院 75

前端编码（Front coding）

• 前端编码

–按照词典顺序排列的连续词项之间往往具有公共前
缀

– (块内k个词项的最后k-1个)

图中词具有公共前缀
automat，*标识前缀末尾
结束，♢表示该前缀

   

编码 除 外的额外长度

8automata8automate9automatic10automation

索引构建与压缩 计算机科学与技术学院 76

小结 词典压缩：RCV1文档集的词典压缩结果

索引构建与压缩 计算机科学与技术学院 77

提纲

• 压缩

• 词项统计量

• 词典压缩

• 倒排记录表压缩

索引构建与压缩 计算机科学与技术学院 78

倒排记录表压缩

• 倒排记录表远大于词典，至少为10倍

• 迫切要求：紧密地存储每一个倒排记录表

• 每个倒排记录用文档ID来定义

• 对Reuters (800,000文档)来说，当使用4字节(定
长)整数表示时，每个文档ID需要32bit

• 或者，可以用log2800,000 ≈ 20 bits 来表示每个
文档ID

• 目标：用远小于20bit来表示每个文档ID

100M(倒排记录数目) * 20b / 8 (b/B) = 250MB

索引构建与压缩 计算机科学与技术学院 79

预处理前后词项、词条数目
不同词项 无位置信息倒排记录 词条

词典 无位置信息倒排表 包含位置信息的倒排
表

数目 ∆% T% 数目(K) ∆% T% 数目(K) ∆% T%

未过滤 484,494 109,971 197,879

无数字 474,723 -2 -2 100,680 -8 -8 179,158 -9 -9

大小写转换 391,523 -17 -19 96,969 -3 -12 179,158 0 -9

30个停用词 391,493 0 -19 83,390 -14 -24 121,858 -31 -38

150个停用词 391,373 0 -19 67,002 -30 -39 94,517 -47 -52

词干还原 322,383 -17 -33 63,812 -4 -42 94,517 0 -52

近似是0
30个与391,523个相比

因考虑位置信息，所以不管
大写，小写，都依然存在

∆%表示和前一行相比数目的减少比率，而“停用词”均使用“大小写转换”那行作为
基准。T%表示以“未过滤”为基准。
词条实际上表示了考虑位置信息。

索引构建与压缩 计算机科学与技术学院 80

倒排记录表：相反的两点

• 像“arachnocentric”这样的词项可能在一百万
个文档中才会出现一次 – 可以用log21M ≈ 20

bits来存储这一倒排记录。

• 像“the”这样的词项在每个文档中都会出现，
所以对它采用20bit/倒排记录太浪费了

–这种情况更希望是0/1的bit向量

索引构建与压缩 计算机科学与技术学院 81

规律的探寻：倒排记录表项中文档ID的间距(GAP)

• 按照文档ID的递增顺序来存储一个词项的倒排
列表。

– Computer：33, 47, 154, 159, 202, …

• 结论：可以存储间距

– 33, 14, 107, 5, 43, …

• 期望：绝大多数间距存储空间都远小于20bit

索引构建与压缩 计算机科学与技术学院 82

找找GAP：3个倒排记录表项

注：比如，对于 computer，存储间距序列 107, 5, 43, . . .

,而不是文档 ID 序列 283154, 283159, 283202,…。

当然，第一个文档 ID 仍然被保留（表中仅显示了
arachnocentric的第一个文档ID）。

索引构建与压缩 计算机科学与技术学院 83

可变长度编码

• 目标：

–对于arachnocentric(低频), 使用20bit/间距项

–对于the(高频)，使用1 bit/间距项

• 如果词项的平均间距为G，我们想使用log2G

bit/间距项

• 关键问题：需要利用整数个字节来对每个间距
编码

–这需要一个可变长度编码 ：对一些小数字使用短
码来实现

索引构建与压缩 计算机科学与技术学院 84

例子

214577= 0001101 0001100 0110001

索引构建与压缩 计算机科学与技术学院 85

GAP可变字节码(Variable Byte)

• 对一个间距值G，想用最少的所需字节来表示
log2G bit

• 先用一个字节来存储G，并分配1bit作为延续位
c

• 如果 G ≤127，对7位有效码采用二进制编码并
设延续位c=1 (表示结束)

• 若G > 127，则先对G低阶的7位编码，然后采
取相同的算法用额外的字节对高阶bit位进行编
码

• 设置最后一个字节的延续位为1(c=1)，其他字
节的c=0 (表示未结束)

索引构建与压缩 计算机科学与技术学院 86

其它的可变单位编码

• VB编码思想也可应用在与字节不同的单位上
：32bit(words)，16bit，4bit(nibble)

• 可变字节编码在那些很小的间距上浪费了空间
— 半字节在这种情况下表现得更好

• 可变字节编码

–被很多商业/研究系统所使用

–实现简单，能够在时间和空间之间达到一个非常好
的平衡点

索引构建与压缩 计算机科学与技术学院 87

RCV1压缩

索引构建与压缩 计算机科学与技术学院 88

总结

• 现在可以为布尔查询创建一个索引，即高效又
非常节省空间

• 只有文档集总大小的4%

• 在文档集中只有文本总大小的10-15%

• 但是，忽略了索引的位置信息

• 因此，在实际中，索引所节省的空间并没有这
么多

