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线性代数基础
• 令 C 为一个 M×N 的词项-文档矩阵，
其中的每个元素都是非负实数。

• 矩阵的秩(rank)是线性无关的行(或列)的
数目，因此有 rank(C) ≤ min{M, N}。

• 一个非对角线上元素均为零的 r×r 方
阵被称为对角阵(diagonal matrix)，其秩
等于其对角线上非零元素的个数。

• 如果上述对角阵上的r个元素都是1，则
称之为 r维单位矩阵(identity matrix)，
记为Ir。
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• 对于 M×M 的方阵 C 及非零向量 ，有

• 满 足 上 式 的 λ 被 称 为 矩 阵 C 的 特 征 值
(eigenvalues)。

• 对于特征值 λ，满足等式M 维非零向量 称为
其右特征向量(right eigenvector)。

• 对应最大特征值的特征向量被称为主特征向
量(principal eigenvector)。

• 同样，矩阵 C 的左特征向量(left eigenvectors)

是满足下列等式的M维向量 ：

x

x x=C

x

y

T Ty y=C
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• 特征方程(characteristic equation)

–可以通过求解这个方程来得到矩阵的特征值

( ) 0M x− =C I
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矩阵分解(matrix decomposition)

• 将方阵分解成多个矩阵因子乘积的方法，并且
这几个矩阵因子都可以从方阵的特征向量导出
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矩阵对角化定理

• 令 S 为 M×M 的实方阵，并且它有 M 个线性
无关的特征向量，那么存在一个特征分解：

–其中U 的每一列都是S的特征向量

– Λ是按照特征值从大到小排列的对角阵

–如果特征值都不相同，那么该分解是唯一的

1−=S UΛU
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对称对角化定理

• 假定 S 是一个 M×M 的实对称方阵，并且它有
M 个线性无关的特征向量，那么存在如下一个
对称对角化分解：

–其中，Q的每一列都是S的互相正交且归一化(单位
长度)的特征向量，

– Λ 是对角矩阵，其每个对角线上的值都对应S的一
个特征值。

–另外，由于Q是实矩阵，所以有

T=S QΛQ

T 1−=Q Q
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词项-文档矩阵及SVD

• 迄今为止介绍的分解都是基于方阵，然而，我
们感兴趣的是 M×N 的词项-文档矩阵 C，如果
排除极端罕见的情况，那么有 M≠N

• 另外，C 基本上也不可能是对称矩阵。

• 因此，先给出对称对角化分解的一个被称为
SVD 的扩展形式，然后将它用于构建 C 的近
似矩阵
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• 给定矩阵C，

– U是一个M×M的矩阵，其每一列是矩阵CCT的正交特征
向量，

– 而N×N矩阵V的每一列都是矩阵CTC的正交特征向量。

– CT是C的转置矩阵。

• 定理：令r是M×N矩阵C的秩，那么C存在如下形式
的SVD：

C= UΣVT

– CCT的特征值λ1, λ2,…, λr等于 CTC的特征值；

– 对于 1≤ i ≤ r，令 ，并且 λi ≥ λi+1。 M×N的矩阵Σ

满足Σii=σi，其中 1≤ i≤ r，而Σ中其他元素均为 0。

– 其中，σi就是矩阵 C 的奇异值(singular value)

i i =
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CCT= UΣVTVΣUT = UΣΣTUT

• 左边CCT是一个实对称方阵

• 右边UΣΣTUT正好是对称对角化分解形式

• CCT实际上是一个方阵，其每行和每列都对
应 M 个词项中的一个。

–矩阵中的第 i 行、第 j 列的元素实际上是第 i 个词
项与第 j 个词项基于文档共现次数的一个重合度
计算指标。

–其精确的数学含义依赖于构建C所使用的词项权
重方法

• 假定C是词项-文档布尔矩阵，那么CCT的第 i 行、第 j

列的元素是词项 i 和词项 j 共现的文档数目
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• 当记录 SVD分解的数值结果时，由于其他部分都是
零，常规做法是将Σ表示成一个r×r的对角方阵，所
有奇异值排列在对角线上。同样，对应于Σ中被去
掉的行，U中的最右M-r列也被去掉。对应于Σ中被
去掉的列，V中的最右N-r列也被去掉。这种SVD的
书写形式有时被称为简化的SVD(reduced SVD)或截
断的SVD(truncated SVD)
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低秩逼近
• 给定 M×N 的矩阵C及正整数 k，寻找一个秩不高于 k

的 M×N 的矩阵Ck，使得两个矩阵的差 X = C − Ck的
F−范数(Frobenius Norm，弗罗宾尼其范数)最小，即
下式最小

– X的F−范数度量了Ck和C之间的差异程度。

– 目标是找到一个矩阵Ck，会使得这种差异极小化，同时又
要限制Ck的秩不高于k。

– 如果r是C的秩，那么很显然Cr=C，此时矩阵差值的F范数
为 0。

– 当k比r小得多时，称Ck为低秩逼近(low-rank approximation)

矩阵
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• SVD可以用于解决矩阵低秩逼近问题，将其应用到
词项-文档矩阵的逼近问题上来。要进行三步操作：

– 给定C，构造SVD分解，因此 C = UΣVT；

– 把Σ中对角线上r-k个最小奇异值置为0，从而得到Σk；

– 计算 Ck = UΣkV
T作为 C 的逼近。

• 由于Σk最多包含k个非零元素，所以Ck的秩不高于k

• 小特征值对于矩阵乘法的影响也小。因此，将这些
小特征值替换成 0 将不会对最后的乘积有实质性影
响，也就是说该乘积接近 C。
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回顾一下词项文档矩阵

该矩阵是计算文档和查询的相似度的基础，接下来介绍
能否通过对该矩阵进行转换来获得文档和查询之间的一
个更好的相似度计算方法？
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隐性语义索引LSI简介
• 将词项-文档矩阵转换成多个矩阵的乘积

• 这里使用的是一个特定的分解方法奇异值分解
(Singular value decomposition, SVD)

• C = UΣVT (其中C是词项-文档矩阵)

• 利用SVD分解的结果来构造一个新的、改进的词项-

文档矩阵C’

• 通过C’可以得到一个更好的相似度计算方法(相对C而
言)

• 为了这种目的使用SVD被称为隐性语义索引(Latent

Semantic Indexing, LSI)
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例子 C = UΣVT，矩阵C

• 词项-文档矩阵(布尔)
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例子C = UΣVT，矩阵U

• 每个词项对应一行，每个min(M, N)对应一列，M为词项数目，
N是文档数目

• 这是一个正交矩阵
– 列向量都是单位向量

– 任意两个列向量之间都是正交的。可以想象这些列向量分布代表不同
的“语义”维度，比如政治、体育、经济等主题。

– 矩阵元素uij给出的是词项i和第j个“语义”维度之间的关系强弱程度



隐性语义索引 计算机科学与技术学院24

例子C = UΣVT ，矩阵Σ

• 是一个min(M,N)× min(M,N)的对角方阵
– 对角线上是矩阵C的奇异值

– 奇异值的大小度量的是对应“语义”维度的重要性

– 可以通过忽略较小的值来忽略对应的“语义”维度

1               2              3              4             5

1

2

3

4

5
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例子 C = UΣVT，矩阵VT

• 每个词项对应一列，每个min(M,N)对应一行

• 这也是一个正交矩阵
– 每个行向量都是单位向量

– 任意两个列向量之间都是正交的

– 可以想象每个行向量代表一个“语义”维度

– 矩阵元素vij给出的是文档i和第j个“语义”维度之间的关系强弱程度
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例子C = UΣVT，所有4个矩阵

C

1             2           3            4             5

1

2

3

4

5

U

∑ VT
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LSI小结

• 词项-文档矩阵可以分解成3个矩阵的乘积

• 词项矩阵U-每个词项对应其中的一个行向量

• 文档矩阵VT-每篇文档对应其中的一个列向量

• 奇异值矩阵Σ-对角方阵，对角线上的奇异值代
表的是每个“语义”维度的重要性
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为什么在LSI中使用SVD分解
• 最关键的性质：每个奇异值对应的是每个“语义”维度的权重

• 将不太重要的权重置为0，可以保留重要的信息，去掉一些信
息“枝节”

• 这些“枝节”可能是
– 噪音-这种情况下，简化的LSI噪音更少，是一种更好的表示方法

– 枝节信息可能会使本来应该相似的对象不相似，同样简化的LSI由于其
能更好的表达相似度，因而是一种更优的表示方式

• “细节越少越好”的一个类比
– 鲜红色花朵的图像

– 红黑花朵的图像

– 如果忽略颜色，将更容易看到两者的相似性
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将空间维度将为2

实际上，只
需将矩阵Σ中

相应的维度
置为0即可。

此时，相当
于矩阵U和VT

的相应维度
被忽略，然
后计算

C2= UΣ2V
T

1             2           3            4             5
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1             2           3            4             5
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为什么新的低维空间更好？

• 在原始空间C中，d2和d3的相似度是0

• 在新的空间C2，d2和d3的相似度为0.52 ∗ 0.28 + 0.36 ∗
0.16 + 0.72 ∗ 0.36 + 0.12 ∗ 0.20 + −0.39 ∗ −0.08 ≈ 0.52 
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为什么新的低维空间更好？

• Boat和ship语义相似。低维空间能反映出这一点。
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LSI在IR中使用的原因
• LSI能够发现文档语义上的关联

• 但是在原始向量空间中这些文档相似度不大(因为它
们使用不同的词语)

• 通过LSI将它们映射到新的低维向量空间中

• 在新的空间下，两者相似度较高

• 因此，LSI能解决一词多义和语义关联问题

• 在原始向量空间下，同义词对文档相似度没有任何贡
献

• LSI所期望的效果：同义词对文档相似度贡献很大
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LSI是如何解决一词多义和语义关联问题的

• 降维迫使忽略大量“细节”

• 将原始空间下不同的词映射到低维空间的同一维中

• 将同义词映射到同一维的“开销”远小于无关词的聚
集

• SVD选择开销最小的映射方法

• 因此，SVD会将同义词映射到同一维

• 但是，它同时能避免将无关词映射到同一维
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LSI与其它方法的比较

• 如果查询和文档没有公共词项时，前面介绍的
相关反馈和查询扩展可以用于提高IR的召回率

• LSI会提高召回率但是损害正确率

• 因此，它和相关反馈查询扩展解决的是同一问
题

• 同样，它们的缺点也一致
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LSI的实现

• 对词项-文档矩阵进行SVD分解

• 计算在新的低维空间下的文档表示

• 将查询q映射到LSI低维空间中

–上式来自

• 计算q2和V2中的所有文档表示的相似度

• 像以往一样按照相似度高低输出文档结果

1 T T

k k kq q−=  U

T 1 T T

2 2 2 2

−=  =C UΣ V Σ U C V
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最优性

• SVD在下面的意义上说是最优的

–保留k个最大的奇异值并将其它奇异值置为0，这种
做法得到原始矩阵C的最佳逼近

–最优性：不存在其它同秩的矩阵更加逼近C


