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▪聚类的概念(What is clustering?)

▪聚类在IR中的应用

▪K-均值(K-Means)聚类算法

▪聚类评价

▪簇(cluster)个数(即聚类的结果类别个数)确定

▪层次聚类

本讲内容
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提纲

• 聚类介绍

• 聚类在IR中的应用

• K-均值聚类算法

• 聚类评价

• 簇个数确定

• 层次聚类
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▪(文档)聚类是将一系列文档按照相似性聚团成子集或
者簇(cluster)的过程

▪簇内文档之间应该彼此相似

▪簇间文档之间相似度不大

▪聚类是一种最常见的无监督学习(unsupervised learning)

方法

▪ 无监督意味着没有已标注好的数据集

聚类(Clustering)的定义
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提出一个算法来
寻找该例中的簇
结构

一个具有清晰簇结构的数据集
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▪分类：有监督的学习

▪聚类：无监督的学习

▪分类：类别事先人工定义好，并且是学习算法的输入的一部
分

▪聚类：簇在没有人工输入的情况下从数据中推理而得

▪ 但是，很多因素会影响聚类的输出结果：簇的个数、相似度计
算方法、文档的表示方式，等等

分类 vs. 聚类
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提纲

• 聚类介绍

• 聚类在IR中的应用

• K-均值聚类算法

• 聚类评价

• 簇个数确定

• 层次聚类
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聚类假设：在考虑文档和信息需求之间的相关性时，同一簇中
的文档表现互相类似。

聚类在IR中的所有应用都直接或间接基于上述聚类假设

Van Rijsbergen的原始定义: “closely associated documents tend to

be relevant to the same requests” （彼此密切关联的文档和同一信
息需求相关）

聚类假设
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聚类在IR中的应用

应 用 聚类对象 优 点

搜索结果聚类 搜索结果
提供面向用户的更有效的展
示

“分散—集中”界面 文档集和文档
子集

提供另一种用户界面，即不
需要人工输入关键词的搜索
界面

文档集聚类 文档集
提供一种面向探索式浏览的
有效的信息展示方法

基于语言建模的IR文
档集

文档集 提高正确率和/或召回率

基于聚类的检索 文档集 加快搜索速度
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▪为提高搜索召回率

▪ 可以实现将文档集中的文档进行聚类

▪ 当文档d和查询匹配时，也返回包含d的簇所包含的其它文档

▪ 希望通过上述做法，在输入查询“car“时，也能够返回包含
“automobile”的文档

▪ 由于聚类算法会把包含 “car”的文档和包含 “automobile”的文
档聚在一起

▪ 两种文档都包含诸如 “parts”、 “dealer”、 “mercedes”和“road 

trip”之类的词语

文档聚类用于提高召回率
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▪一般目标：将相关文档放到一个簇中，将不相关文档
放到不同簇中

▪ 如何对上述目标进行形式化？

▪簇的数目应该合适，以便与聚类的数据集相吻合

▪ 一开始，假设给定簇的数目为K。

▪ 后面会介绍确定K的半自动方法

▪聚类的其它目标

▪ 避免非常小和非常大的簇

▪ 定义的簇对用户来说很容易理解

▪ 其它……

聚类的要求
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▪扁平算法

▪ 通过一开始将全部或部分文档随机划分为不同的组

▪ 通过迭代方式不断修正

▪ 代表算法：K-均值聚类算法

▪层次算法

▪ 构建具有层次结构的簇

▪ 自底向上(Bottom-up)的算法称为凝聚式(agglomerative)算
法

▪ 自顶向下(Top-down)的算法称为分裂式(divisive)算法

扁平聚类 vs. 层次聚类
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▪硬聚类(Hard clustering): 每篇文档仅仅属于一个簇

▪ 很普遍并且相对容易实现

▪软聚类(Soft clustering): 一篇文档可以属于多个簇

▪ 对于诸如浏览目录之类的应用来说很有意义

▪ 比如，将胶底运动鞋 (sneakers) 放到两个簇中：

▪ 体育服装(sports apparel)

▪ 鞋类(shoes)

▪ 只有通过软聚类才能做到这一点

▪本节课关注扁平的硬聚类算法

硬聚类 vs. 软聚类
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扁平算法：将N篇文档划分成K个簇

▪给定一个文档集合及聚类结果簇的个数K

▪寻找一个划分将这个文档集合分成K个簇，该结果满
足某个最优划分准则

▪全局优化：穷举所有的划分结果，从中选择最优的那
个划分结果

▪ 无法处理

▪高效的启发式方法: K-均值聚类算法

扁平算法
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提纲

• 聚类介绍

• 聚类在IR中的应用

• K-均值聚类算法

• 聚类评价

• 簇个数确定

• 层次聚类



文本聚类 计算机科学与技术学院 16

▪或许是最著名的聚类算法

▪算法十分简单，但是在很多情况下效果不错

▪是文档聚类的默认或基准算法

K-均值聚类算法
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▪向量空间模型

▪同基于向量空间的分类一样，采用欧氏距离的方法
来计算向量之间的相关性. . .

▪欧氏距离与余弦相似度差不多等价(如果两个向量都

基于长度归一化，那么欧氏距离和余弦相似度是等价
的)

▪然而，质心向量通常都没有基于长度进行归一化

聚类中的文档表示
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▪K-均值聚类算法中的每个簇都定义为其质心向量

▪划分准则：使得所有文档到其所在簇的质心向量的平
方和最小

▪质心向量的定义

其中 ω代表一个簇

▪通过下列两步来实现目标优化

▪ 重分配(reassignment): 将每篇文档分配给离它最近的簇

▪ 重计算(recomputation): 重新计算每个簇的质心向量

K-均值聚类算法
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K-均值聚类算法
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例子
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(i) 猜猜最后划分的两个簇是什么？

(ii) 计算簇的质心向量

例子：随机选择两个种子(K=2)
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例子：将文档分配给离它最近的质心向量(第一次)
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例子：分配后的簇(第一次)
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例子：重新计算质心向量
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例子：将文档分配给离它最近的质心向量(第二次)
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例子：重新分配的结果
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例子：重新计算质心向量
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例子：再重新分配(第三次)
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例子：分配结果
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例子：重新计算质心向量
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例子：再重新分配(第四次)
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例子：分配结果
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例子：重新计算质心向量
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例子：重新分配(第五次)
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例子：分配结果
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例子：重新计算质心向量
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例子：重新分配(第六次)
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例子：分配结果
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例子：重新计算质心向量
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例子：重新分配(第七次)
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例子：分配结果
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例子：重新计算质心向量



文本聚类 计算机科学与技术学院 43

质心向量和分配结果最终收敛
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▪RSS(Residual Sum of Squares，残差平方和) = 所有簇
上的文档向量到(最近的)质心向量的距离平方和的总和

▪每次重新分配之后RSS会下降

▪ 这是因为每个向量都被移到离它最近的质心向量所代表的
簇中 (只有找到更近的质心才会重新分配)

▪每次重新计算之后RSS也会下降

▪ 参见下一页幻灯片

▪可能的聚类结果是有穷的

▪因此：一定会收敛到一个固定点

▪当然，这里有一个假设就是假定出现了等值的情况，
算法都采用前后一致的方法来处理(比如，某个向量到
两个质心向量的距离相等)

K-均值聚类算法一定会收敛: 证明
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因此，当将旧质心替换为新质心 时，可以让RSSk极小化。重
新计算之后，作为RSSk之和的RSS一定也会下降。

簇的质心 所有向量到其质
心距离的平方和

K个簇的所有向量到
其质心距离的平方和

如果能够证明在每次迭代后RSS的值单调递减，那么K-均值算法就会收敛。

xm和vm分别是文档向量和簇质心向量的第m个分量

得到vm，其刚好基于每个向
量分量来计算的质心的定义

使得每个RSSk达到最小值

v
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▪但是不知道达到收敛所需要的时间!

▪如果不太关心少许文档在不同簇之间来回交叉的话，
收敛速度通常会很快 (< 10-20次迭代)

▪但是，完全的收敛需要多得多的迭代过程

K-均值聚类算法一定是收敛的
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▪收敛并不意味着会达到全局最优的聚类结果!

▪这是K-均值聚类算法的最大缺点之一

▪如果开始的种子选的不好，那么最终的聚类结果可能会非常糟糕

▪K=2情况下的最优聚类结果是什么？

▪对于任意的种子di 、dj，是否都会收敛于该聚类结果？

▪对于种子d2和d5，K-均值算法最后收敛为{{d1, d2, d3}, {d4, d5, d6}}

▪对种子d2和d3，收敛结果为{{d1, d2, d4, d5}, {d3, d6}}，这是K=2时
的全局最优值

K-均值聚类算法的最优性



文本聚类 计算机科学与技术学院 48

▪种子的随机选择只是K-均值聚类算法的一种初始化方
法之一

▪随机选择不太鲁棒：可能会获得一个次优的聚类结果

▪一些确定初始质心向量的更好办法

▪ 非随机地采用某些启发式方法来选择种子(比如，过滤掉一
些离群点，或者寻找具有较好文档空间覆盖度的种子集合)

▪ 采用层级聚类算法寻找好的种子

▪ 选择 i (比如 i = 10) 次不同的随机种子集合，对每次产生的
随机种子集合运行K-均值聚类算法，最后选择具有最小
RSS值的聚类结果

K-均值聚类算法的初始化
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▪计算两个向量的距离的时间复杂度为O(M)

▪重分配过程：O(KNM) (需要计算 KN 个文档-质心的距
离)

▪重计算过程：O(NM) (在计算质心向量时，需要累加
簇内的文档向量)

▪假定迭代次数的上界是 I

▪整体复杂度: O(IKNM) – 线性

▪但是，上述分析并没有考虑到实际中的最坏情况

▪在一些非正常的情况下，复杂度可能会比线性更糟

K-均值聚类算法的时间复杂度
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提纲

• 聚类介绍

• 聚类在IR中的应用

• K-均值聚类算法

• 聚类评价

• 簇个数确定

• 层次聚类
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▪内部准则(Internal criteria)

▪ 一个内部准则的例子： K-均值聚类算法的RSS值

▪但是内部准则往往不能评价聚类在应用中的实际效用

▪替代方法：外部准则(External criteria)

▪ 按照用户定义的分类结果来评价，

▪ 即对一个分好类的数据集进行聚类，将聚类结果和事先的
类别情况进行比照，得到最后的评价结果

怎样判断聚类结果的好坏?
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▪基于已有标注的标准数据集(如Reuters语料库)来进行
聚类评价

▪目标：聚类结果和给定分类结果一致

▪(当然，聚类中并不知道最后每个簇的标签，而只是
关注如何将文档聚到不同的组中)

▪评价指标

▪ 纯度(purity)

▪ NMI (Normalized Mutual Information，归一化互
信息)

▪ RI (Rand Index，兰德指数)

▪ F值 (F measure）

外部准则
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▪Ω= {ω1, ω2, . . . , ωK} 是簇的集合

▪C = {c1, c2, . . . , cJ} 是类别的集合

▪对每个簇 ωk：找到一个类别cj，该类别包含ωk中的元
素最多，为nkj个，也就是说ωk的元素最多分布在cj中

▪将所有nkj求和，然后除以所有的文档数目N

外部准则: 纯度
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计算纯度
maxj |ω1 ∩ cj | = 5   (class x, cluster 1);

maxj |ω2 ∩ cj | = 4   (class o, cluster 2); 

maxj |ω3 ∩ cj | = 3   (class ⋄, cluster 3)

纯度为 (5 + 4 + 3) / 17 ≈ 0.71.

纯度计算的例子
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外部准则:归一化互信息
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其中，P(ωk)、P(cj)及P(ωk∩cj)分别是一篇文档属于ωk、cj及
ωk∩cj 的概率。
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▪定义

▪考虑所有两个文档之间(文档对)的关系，可以得到 2x2 的列联

表

▪将聚类看成是一系列的决策过程，即对文档集上所有N(N−1)/2

个文档对进行决策。当且仅当两篇文档相似时，将它们归入同

一簇中。

▪TP(True-positive,真阳性 ):将两篇相似文档归入一个簇，而

TN(True-negative,真阴性)将两篇不相似的文档归入不同的簇。在

此过程中会犯两类错误：FP决策会将两篇不相似的文档归入同

一簇，而FN决策将两篇相似的文档归入不同簇。

▪RI计算的是正确决策的比率，就是在8.3节中提到的精确率

外部准则：兰迪指数/准确率(Rand index)
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回到上例，三个簇中分别包含6、6、5个点，因此处于同一簇的
文档对的个数为：

其中，簇1中的x 对，簇2中的 o 对，簇3中的 ⋄ 对，以及簇3中的
x 对，都是真正例：

于是，FP = 40 − 20 = 20。类似地，可以计算出FN和TN。

(20 + 72)/(20 + 20 + 24 + 72) ≈ 0.68.

兰迪指数：例子

6*5/2
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外部准则：F值

• 可以使用F 值来度量聚类结果，并通过设置β > 

1 以加大对FN 的惩罚，此时实际上也相当于赋
予召回率更大的权重
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提纲
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▪在很多应用中，簇个数 K 是事先给定的

▪ 比如，可能存在对K的外部限制

▪ 例子：在“分散-集中”应用中，在显示器上(上世纪90年
代)很难显示超过10-20个簇

▪如果没有外部的限制会怎样？是否存在正确的簇个数？

▪一种办法：定义一个优化准则

▪ 给定文档，找到达到最优情况的K 值

▪ 能够使用的最优准则有哪些？

▪ 我们不能使用前面所提到的RSS或到质心的平均平方距离
等准则，因为它们会导致K = N 个簇

簇个数确定



文本聚类 计算机科学与技术学院 61

▪基本思路

▪ 从1个簇开始 (K = 1)

▪ 不断增加簇 (= 不断增大 K)

▪ 对每个新的簇增加一个惩罚项

▪在惩罚项和RSS之间折中

▪选择满足最佳折中条件的 K

简单的目标函数
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▪给定聚类结果，定义文档的代价为其到质心向量的
(平方)距离(失真率)

▪定义全部失真率 RSS(K) 为所有文档代价的和

▪然后：对每个簇一个惩罚项 λ

▪于是，对于具有 K 个簇的聚类结果，总的聚类惩罚项
为 Kλ

▪定义聚类结果的所有开销为失真率和总聚类惩罚项的
和

▪ RSS(K) + Kλ

▪选择使得 (RSS(K) + Kλ) 最小的K值

▪当然，还要考虑较好的λ值 . . .
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在曲线中寻找拐点

本图中两个拐点：4 和 9
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提纲

• 聚类介绍

• 聚类在IR中的应用

• K-均值聚类算法

• 聚类评价

• 簇个数确定

• 层次聚类
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层次聚类 hierarchical clustering
• 扁平聚类

– 优点：概念简单、速度快

– 缺点：算法返回的是一个无结构的扁平簇集合，需要预先定义簇的数
目，并且聚类结果具有不确定性

• 层次聚类

– 输出一个具有层次结构的簇集合，因此能够比扁平聚类输出的无结构
簇集合提供更丰富的信息。

– 不需要事先指定簇的数目，并且大部分用于IR中的层次聚类算法都是
确定性算法。

– 在获得这些好处的同时，其代价是效率降低。最普遍的层次聚类算法
的时间复杂度至少是文档数目的平方级，而K-均值算法的时间复杂度
是线性的。

• 当效率因素非常重要时，选择扁平聚类算法。而当扁平算法的
问题（如结构信息不足、簇数目需要预先定义、聚类结果非确
定性）需要加以考虑时，则采用层次算法
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层次聚类的目标
• 目标: 生成类似于前面提到的Reuters目录的一个层次
结构。

• 这个层次结构是自动创建的，可以通过自顶向下(分
裂式divisive)或自底向上(凝聚 agglomerate)的方法实
现。

– 自底向上的算法: 一开始将每篇文档都看成是一个簇，然后
不断地对簇进行两两合并，直到所有文档都聚成一类为止

– 而自顶向下的方法: 首先将所有文档看成一个簇，然后不断
利用某种方法对簇进行分裂直到每篇文档都成为一个簇为
止。
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层次凝聚式聚类

• 在IR 领域， HAC 方法的使用比自顶向下方法

更普遍。最著名的自底向上的方法是层次凝聚
式聚类(hierarchical agglomerative clustering，
HAC)

–一开始每篇文档作为一个独立的簇

–然后，将其中最相似的两个簇进行合并

–重复上一步直至仅剩一个簇

–整个合并的历史构成一个二叉树

–一个标准的描述层次聚类合并历史的方法是采用树
状图(dendrogram)
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24个簇 12个簇
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关键问题：如何定义簇间相似度
• 单连接(Single-link)

– 两个最大相似的成员之间的相似度

• 全连接(Complete-link)
– 两个最不相似的成员之间的相似度

• 质心法: 平均的类间相似度

– 所有的簇间文档对之间相似度的平均值 (不包括同一个簇内
的文档之间的相似度)

– 这等价于两个簇质心之间的相似度

• 组平均(Group-average): 平均的类内和类间相似度

– 所有的簇间文档对之间相似度的平均值 (包括同一个簇内的
文档之间的相似度)
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单连接/全连接算法
• 单连接聚类(single-link clustering)

– 两个簇之间的相似度定义为两个最相似(最近)的成员之间的
相似度。

– 这种单连接的合并准则是局部的，即仅仅关注两个簇互相
邻近的区域，而不考虑簇中更远的区域和簇的总体结构。

• 全连接聚类(complete-link clustering)

– 两个簇之间的相似度定义为两个最不相似的成员之间的相
似度，这也相当于选择两个簇进行聚类，使得合并结果具
有最短直径。

– 全连接聚类准则是非局部的，聚类结果中的整体结构信息
会影响合并的结果。这种聚类实际上相当于优先考虑具有
较短直径的紧凑簇，而不是具有长直径的松散簇

– 这种做法可能对离群点较为敏感，比如某个远离中心的文
档会显著增加候选簇的直径从而完全改变最后的聚类结果
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Single Link Example －1

d1 d2 d3 d4

d5 d6 d7 d8

),(max),(
,

yxsimccsim
ji cycx

ji


=
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Single Link Example －1

d1 d2 d3 d4

d5 d6 d7 d8

),(max),(
,

yxsimccsim
ji cycx

ji


=
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Single Link Example －1

d1 d2 d3 d4

d5 d6 d7 d8

),(max),(
,

yxsimccsim
ji cycx

ji


=
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Single Link Example －1

d1 d2 d3 d4

d5 d6 d7 d8

),(max),(
,

yxsimccsim
ji cycx

ji


=
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Single Link Example －1

d1 d2 d3 d4

d5 d6 d7 d8

),(max),(
,

yxsimccsim
ji cycx

ji


=
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Single Link Example －1

d1 d2 d3 d4

d5 d6 d7 d8

簇间最近

),(max),(
,

yxsimccsim
ji cycx

ji


=

簇间最近
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Single Link Example －1

d1 d2 d3 d4

d5 d6 d7 d8

簇间最近

),(max),(
,

yxsimccsim
ji cycx

ji


=

簇间最近
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Single Link Example －1

d1 d2 d3 d4

d5 d6 d7 d8

),(max),(
,

yxsimccsim
ji cycx

ji


=
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Single Link Example －1

d1 d2 d3 d4

d5 d6 d7 d8

),(max),(
,

yxsimccsim
ji cycx

ji


=
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Single Link Example －2

 A B C D E F

A - 0.3 0.5 0.6 0.8 0.9

B 0.3 - 0.4 0.5 0.7 0.7

C 0.5 0.4 - 0.3 0.5 0.2

D 0.6 0.5 0.3 - 0.4 0.1

E 0.8 0.7 0.5 0.4 - 0.3

F 0.9 0.7 0.2 0.1 0.3 -
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 A B C D E F

A - 0.3 0.5 0.6 0.8 0.9

B 0.3 - 0.4 0.5 0.7 0.7

C 0.5 0.4 - 0.3 0.5 0.2

D 0.6 0.5 0.3 - 0.4 0.1

E 0.8 0.7 0.5 0.4 - 0.3

F 0.9 0.7 0.2 0.1 0.3 -
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A F

0.9

AF

 A B C D E F

A - 0.3 0.5 0.6 0.8 0.9

B 0.3 - 0.4 0.5 0.7 0.7

C 0.5 0.4 - 0.3 0.5 0.2

D 0.6 0.5 0.3 - 0.4 0.1

E 0.8 0.7 0.5 0.4 - 0.3

F 0.9 0.7 0.2 0.1 0.3 -

),(max),(
,

yxsimccsim
ji cycx

ji


=
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A F

0.9

AF

 A B C D E F

A - 0.3 0.5 0.6 0.8 0.9

B 0.3 - 0.4 0.5 0.7 0.7

C 0.5 0.4 - 0.3 0.5 0.2

D 0.6 0.5 0.3 - 0.4 0.1

E 0.8 0.7 0.5 0.4 - 0.3

F 0.9 0.7 0.2 0.1 0.3 -

 AF B C D E

AF - 0.7 0.5 0.6 0.8

B 0.7 - 0.4 0.5 0.7

C 0.5 0.4 - 0.3 0.5

D 0.6 0.5 0.3 - 0.4

E 0.8 0.7 0.5 0.4 -

),(max),(
,

yxsimccsim
ji cycx

ji


=
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A F

0.9

AF

A F

0.9

0.8

E

AFE

 A B C D E F

A - 0.3 0.5 0.6 0.8 0.9

B 0.3 - 0.4 0.5 0.7 0.7

C 0.5 0.4 - 0.3 0.5 0.2

D 0.6 0.5 0.3 - 0.4 0.1

E 0.8 0.7 0.5 0.4 - 0.3

F 0.9 0.7 0.2 0.1 0.3 -

 AF B C D E

AF - 0.7 0.5 0.6 0.8

B 0.7 - 0.4 0.5 0.7

C 0.5 0.4 - 0.3 0.5

D 0.6 0.5 0.3 - 0.4

E 0.8 0.7 0.5 0.4 -

),(max),(
,

yxsimccsim
ji cycx

ji


=
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Complete Link Example －1

d1 d2 d3 d4

d5 d6 d7 d8

),(min),(
,

yxsimccsim
ji cycx

ji


=
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d1 d2 d3 d4

d5 d6 d7 d8

),(min),(
,

yxsimccsim
ji cycx

ji


=

簇间最远

簇间最远
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d1 d2 d3 d4

d5 d6 d7 d8

),(min),(
,

yxsimccsim
ji cycx

ji


=

簇间最远

簇间最远
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d1 d2 d3 d4

d5 d6 d7 d8

),(min),(
,

yxsimccsim
ji cycx

ji


=
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d1 d2 d3 d4

d5 d6 d7 d8

),(min),(
,

yxsimccsim
ji cycx

ji


=
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 A B C D E F

A - 0.3 0.5 0.6 0.8 0.9

B 0.3 - 0.4 0.5 0.7 0.7

C 0.5 0.4 - 0.3 0.5 0.2

D 0.6 0.5 0.3 - 0.4 0.1

E 0.8 0.7 0.5 0.4 - 0.3

F 0.9 0.7 0.2 0.1 0.3 -

Complete Link Example －2
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 A B C D E F

A - 0.3 0.5 0.6 0.8 0.9

B 0.3 - 0.4 0.5 0.7 0.7

C 0.5 0.4 - 0.3 0.5 0.2

D 0.6 0.5 0.3 - 0.4 0.1

E 0.8 0.7 0.5 0.4 - 0.3

F 0.9 0.7 0.2 0.1 0.3 -

Complete Link Example －2
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A F

0.9

AF

 A B C D E F

A - 0.3 0.5 0.6 0.8 0.9

B 0.3 - 0.4 0.5 0.7 0.7

C 0.5 0.4 - 0.3 0.5 0.2

D 0.6 0.5 0.3 - 0.4 0.1

E 0.8 0.7 0.5 0.4 - 0.3

F 0.9 0.7 0.2 0.1 0.3 -
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A F

0.9

AF

 A B C D E F

A - 0.3 0.5 0.6 0.8 0.9

B 0.3 - 0.4 0.5 0.7 0.7

C 0.5 0.4 - 0.3 0.5 0.2

D 0.6 0.5 0.3 - 0.4 0.1

E 0.8 0.7 0.5 0.4 - 0.3

F 0.9 0.7 0.2 0.1 0.3 -

 AF B C D E

AF - ? ? ? ?

B ? - 0.4 0.5 0.7

C ? 0.4 - 0.3 0.5

D ? 0.5 0.3 - 0.4

E ? 0.7 0.5 0.4 -
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A F

0.9

AF

 A B C D E F

A - 0.3 0.5 0.6 0.8 0.9

B 0.3 - 0.4 0.5 0.7 0.7

C 0.5 0.4 - 0.3 0.5 0.2

D 0.6 0.5 0.3 - 0.4 0.1

E 0.8 0.7 0.5 0.4 - 0.3

F 0.9 0.7 0.2 0.1 0.3 -

 AF B C D E

AF - ? ? ? ?

B ? - 0.4 0.5 0.7

C ? 0.4 - 0.3 0.5

D ? 0.5 0.3 - 0.4

E ? 0.7 0.5 0.4 -

),(min),(
,

yxsimccsim
ji cycx

ji


=

 AF B C D E

AF - 0.3 0.2 0.1 0.3

B 0.3 - 0.4 0.5 0.7

C 0.2 0.4 - 0.3 0.5

D 0.1 0.5 0.3 - 0.4

E 0.3 0.7 0.5 0.4 -
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单连接算法产生的树状图

• 注意：很多很
小的簇(1 或 2 

个成员) 加入到
一个大的主簇
上面去

• 不存在2个簇或
者3个簇的非常
均衡的结果
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全连接算法产生的树状图

• 比单连接算法
产生的树状图
均衡得多

• 可以生成一个2

个簇的结果，
每个簇大小基
本相当
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单连接和全连接聚类方法的缺点

• 单连接和全连接聚类方法将簇质量的计算过程
简化成两个文档的单一相似度计算，其中

–单连接方法中计算的是两篇最相似的文档之间的相
似度，

–而全连接方法中计算的是两篇最不相似的文档之间
的相似度。

• 仅仅根据两篇文档来计算显然不能完全反映出
簇中的文档分布情况，因此，这两种聚类方法
产生的结果簇往往不是非常理想。
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单连接和全连接聚类方法缺点示例
• 单连接方法的链化(Chaining)现象

– 单连接聚类算法往往产生长的、凌乱的簇结构。对大部分应用来说，
这些簇结构并不是所期望的。

• 全连接法:对离群点非常敏感
– 全连接聚类将d2和它的正确邻居分开----这显然不是我们所需要的

– 出现上述结果的最主要原因是存在离群点 d1

– 这也表明单个离群点的存在会对全连接聚类的结果起负面影响

– 单连接聚类能够较好地处理这种情况
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组平均凝聚式算法(GAAC)
• GAAC(Group-average Agglomerative Clustering)通过计算所有文

档之间(文档对)的相似度来对簇的质量进行计算，因此可以避
免在单连接和全连接准则中只计算一对文档相似度的缺陷。

• GAAC也被称为组平均聚类(group-average clustering)或平均连
接聚类(average-link clustering)。

• GAAC可以计算所有文档之间相似度的平均值SIM-GA，其中
也包括来自同一簇的文档。当然，这种自相似度(dn=dm)在这里
并没有使用。

• 计算公式如下：

• 是文档d的长度归一化向量，⋅ 是内积运算符，Ni 和Nj分别是
ωi和ωj中的文档数目。
d
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质心法HAC

• 簇相似度为所有簇间文档对之间相似度的平均值

• 一个原始的粗糙实现方法效率不高(O(N2))，但是上述
定义相当于计算两个簇质心之间的相似度：

• 这也是质心HAC名称的由来

• 注意：这里是内积计算，而非余弦相似度
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采用质心法进行聚类

• 第1次迭代中，由于<d
5
,d

6
>具有最高的质心相似度，所以迭

代后形成质心为μ
1
的簇{d

5
,d

6
}

每次迭代合并质心距离最近的两个簇
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• 第2次迭代中，由于<d
1
,d

2
>具有最高的质心相似度，所以迭

代后形成质心为μ
2
的簇{d

1
,d

2
}。

每次迭代合并质心距离最近的两个簇
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• 在第3次迭代中，最高的质心相似度在μ
1
和d

4
之间，因此产生

以μ
3
为质心的簇{d

4
,d

5
,d

6
}

每次迭代合并质心距离最近的两个簇
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相似度颠倒现象

• 与其他三种HAC算法相比，质心聚类方法不是

单调的，可能会发生相似度的颠倒现象。也就
是说聚类过程中相似度值有可能会下降。
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到底使用哪一个HAC聚类算法？

• 由于存在相似度颠倒，不使用质心法

• 由于组平均GAAC不会受限于链化，并且对离
群点不敏感，所以大部分情况下，GAAC都是

最佳选择

• 然而，GAAC只能基于向量表示来计算

• 对于其他文档表示方法(或者如果仅仅提供了
文档对之间的相似度)时，使用全连接方法

• 有些应用中适合用单链算法 (比如，Web搜索

中的重复性检测，判断一组文档重复并不受那
些离它们较远的文档所影响)
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四种HAC算法的比较
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单趟聚类算法(Single-Pass Clustering)

1. 初始化处理：给定一个相似度阈值x，任取一个文档，
不失一般性，记该文档为d1，C1 = {d1}，C = {C1}，
D = D - {d1}，其中C表示已经生成的聚类集。

2. 任取d  D，对所有的Ci C，计算d与Ci的相似度Si。

3. 找到与d相似度最大的聚类Cj，即 Sj Si，对任何i 

j。

4. 如果Sj ＝x，则Cj = Cj {d }；//合并

5. 否则s = |C|＋1，Cs = {d }，C = C {Cs }。 //新增

6. D = D - {d }。如果D =，则结束计算，输出C；否
则转入步骤2。
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Single-Pass Clustering Example
 A B C D E F

A - 0.3 0.5 0.6 0.8 0.9

B 0.3 - 0.4 0.5 0.7 0.8

C 0.5 0.4 - 0.3 0.4 0.2

D 0.6 0.5 0.3 - 0.4 0.1

E 0.8 0.7 0.4 0.4 - 0.3

F 0.9 0.8 0.2 0.1 0.3 -

• 假定处理次序为 A, B, C, D, E, F

• 单链 (即每次选择最大相似度)

F

0.9

E

0.8

C

D A B

0.5
0.6

Threshold ＝ 0.5

B D A C

0.5 0.6

F

0.9

0.5

E

0.8

• 问题：文档处理顺序影响最后聚
类结果

• 处理次序为 B, D, A, C, E, F？
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▪聚类的概念(What is clustering?)

▪聚类在IR中的应用

▪K-均值(K-Means)聚类算法

▪聚类评价

▪簇(cluster)个数(即聚类的结果类别个数)确定

▪层次聚类

本讲小结


