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ABSTRACT
In this paper, we present GraRep, a novel model for learn-
ing vertex representations of weighted graphs. This model
learns low dimensional vectors to represent vertices appear-
ing in a graph and, unlike existing work, integrates global
structural information of the graph into the learning process.
We also formally analyze the connections between our work
and several previous research efforts, including the Deep-
Walk model of Perozzi et al. [20] as well as the skip-gram
model with negative sampling of Mikolov et al. [18]

We conduct experiments on a language network, a social
network as well as a citation network and show that our
learned global representations can be effectively used as fea-
tures in tasks such as clustering, classification and visualiza-
tion. Empirical results demonstrate that our representation
significantly outperforms other state-of-the-art methods in
such tasks.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.2.8 [Database
Management]: Database Applications - Data Mining

General Terms
Algorithms, Experimentation

Keywords
Graph Representation, Matrix Factorization, Feature Learn-
ing, Dimension Reduction

1. INTRODUCTION
In many real-world problems, information is often orga-

nized using graphs. For example, in social network research,
classification of users into meaningful social groups based on
social graphs can lead to many useful practical applications
such as user search, targeted advertising and recommenda-
tions. Therefore, it is essential to accurately learn useful
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information from the graphs. One strategy is to learn the
graph representations of a graph: each vertex of the graph
is represented with a low-dimensional vector in which mean-
ingful semantic, relational and structural information con-
veyed by the graph can be accurately captured.

Recently, there has been a surge of interest in learning
graph representations from data. For example, DeepWalk
[20], one recent model, transforms a graph structure into a
sample collection of linear sequences consisting of vertices
using uniform sampling (which is also called truncated ran-
dom walk). The skip-gram model [18], originally designed
for learning word representations from linear sequences, can
also be used to learn the representations of vertices from such
samples. Although this method is empirically effective, it is
not well understood what is the exact loss function defined
over the graph involved in their learning process.

In this work, we first present an explicit loss function of
the skip-gram model defined over the graph. We show that
essentially we can use the skip-gram model to capture the
k-step (k = 1, 2, 3, . . . ) relationship between each vertex and
its k-step neighbors in the graph with different values of k.
One limitation of the skip-gram model is it projects all such
k-step relational information into a common subspace. We
argue that such a simple treatment can lead to potential
issues. The above limitation is overcome in our proposed
model through the preservation of different k-step relational
information in distinct subspaces.

Another recently proposed work is LINE [25], which has
a loss function to capture both 1-step and 2-step local re-
lational information. To capture certain complex relations
in such local information, they also learn non-linear trans-
formations from such data. While their model can not be
easily extended to capture k-step (with k > 2) relational
information for learning their graph representation, one im-
portant strategy used to enhance the effectiveness of their
model is to consider higher-order neighbors for vertices with
small degrees. This strategy implicitly captures certain k-
step information into their model to some extent. We believe
k-step relational information between different vertices, with
different values of k, reveals the useful global structural in-
formation associated with the graph, and it is essential to
explicitly take full advantage of this when learning a good
graph representation.

In this paper, we propose GraRep, a novel model for learn-
ing graph representations for knowledge management. The
model captures the different k-step relational information
with different values of k amongst vertices from the graph
directly by manipulating different global transition matrices
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defined over the graph, without involving slow and complex
sampling processes. Unlike existing work, our model defines
different loss functions for capturing the different k-step lo-
cal relational information (i.e., a different k). We optimize
each model with matrix factorization techniques, and con-
struct the global representations for each vertex by combin-
ing different representations learned from different models.
Such learned global representations can be used as features
for further processing.

We give a formal treatment of this model, showing the
connections between our model and several previous mod-
els. We also demonstrate the empirical effectiveness of the
learned representations in solving several real-world prob-
lems. Specifically, we conducted experiments on a language
network clustering task, a social network multi-label clas-
sification task, as well as a citation network visualization
task. In all such tasks, GraRep outperforms other graph
representation methods, and is trivially parallelizable.

Our contributions are as follows:

• We introduce a novel model to learn latent represen-
tations of vertices on graphs, which can capture global
structural information associated with the graph.

• We provide from a probabilistic prospective an un-
derstanding of the uniform sampling method used in
DeepWalk for learning graph representations, which
translates a graph structure into linear sequences. Fur-
thermore, we explicitly define their loss function over
graphs and extend it to support weighted graphs.

• We formally analyze the deficiency associated with the
skip-gram model with negative sampling. Our model
defines a more accurate loss function that allows non-
linear combinations of different local relational infor-
mation to be integrated.

The organization of this paper is described below. Sec-
tion 2 discusses related work. Section 3 proposes our loss
function and states the optimization method using matrix
factorization. Section 4 presents the overall algorithm. Sec-
tion 5 gives a mathematical explanation to elucidate the
rationality of the proposed work and shows its connection
to previous work. Section 6 discusses the evaluation data
and introduces baseline algorithms. Section 7 presents ex-
periments as well as analysis on the parameter sensitivity.
Finally, we conclude in Section 8.

2. RELATED WORK

2.1 Linear Sequence Representation Methods
Natural language corpora, consisting of streams of words,

can be regarded as special graph structures, that is, linear
chains. Currently, there are two mainstream methods for
learning word representations: neural embedding methods
and matrix factorization based approaches.

Neural embedding methods employ a fixed slide window
capturing context words of current word. Models like skip-
gram [18] are proposed, which provide an efficient approach
to learning word representations. While these methods may
yield good performances on some tasks, they can poorly cap-
ture useful information since they use separate local context
windows, instead of global co-occurrence counts [19]. On
the other hand, the family of matrix factorization methods

can utilize global statistics [5]. Previous work include La-
tent Semantic Analysis (LSA) [15], which decomposes term-
document matrix and yields latent semantic representations.
Lund et al. [17] put forward Hyperspace Analogue to Lan-
guage (HAL), factorizing a word-word co-occurrence counts
matrix to generate word representations. Levy et al. [4]
presented matrix factorization over shifted positive Point-
wise Mutual Information (PMI) matrix for learning word
representations and showed that the Skip-Gram model with
Negative Sampling (SGNS) can be regarded as a model that
implicitly such a matrix [16].

2.2 Graph Representation Approaches
There exist several classical approaches to learning low di-

mensional graph representations, such as multidimensional
scaling (MDS) [8], IsoMap [28], LLE [21], and Laplacian
Eigenmaps [3]. Recently, Tang et al. [27] presented meth-
ods for learning latent representational vectors of the graphs
which can then be applied to social network classification.
Ahmed et al. [1] proposed a graph factorization method,
which used stochastic gradient descent to optimize matrices
from large graphs. Perozzi et al. [20] presented an approach,
which transformed graph structure into several linear vertex
sequences by using a truncated random walk algorithm and
generated vertex representations by using skip-gram model.
This is considered as an equally weighted linear combina-
tion of k-step information. Tang et al. [25] later proposed a
large-scale information network embedding, which optimizes
a loss function where both 1-step and 2-step relational in-
formation can be captured in the learning process.

3. GRAREP MODEL
In this section, we define our task and present our loss

function for our task, which is then optimized with the ma-
trix factorization method.

3.1 Graphs and Their Representations

Definition 1. (Graph) A graph is defined as G = (V,E).
V = {v1, v2, . . . , vn} is the set of vertices with each V indi-
cating one object while E = {ei,j} is the set of edges with
each E indicating the relationship between two vertices. A
path is a sequence of edges which connect a sequence of ver-
tices.

We first define adjacency matrix S for a graph. For an
unweighted graph, we have Si,j = 1 if and only if there exists
an edge from vi to vj , and Si,j = 0 otherwise. For a weighted
graph, Si,j is a real number called the weight of the edge ei,j ,
which indicates the significance of edge. Although weights
can be negative, we only consider non-negative weights in
this paper. For notational convenience, we also use w and c
to denote vertices throughout this paper.

The following diagonal matrix D is known as the degree
matrix for a graph with adjacency matrix S:

Dij =

{ ∑
p Sip, if i = j

0, if i 6= j

Assume we would like to capture the transitions from one
vertex to another, and assume in the adjacency matrix Si,j

is proportional to the transition probability from vi to vj , we
can define the following (1-step) probability transition matrix
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Figure 1: The importance of capturing different k-step information in the graph representations. Here we
give examples for k = 1, 2, 3, 4.

A:

A = D−1S

where Ai,j is the probability of a transition from vi to vertex
vj within one step. It can be observed that the A matrix
can be regarded as a re-scaled S matrix whose rows are
normalized.

Definition 2. (Graph Representations with Global Struc-
tural Information) Given a graph G, the task of Learning
Graph Representations with Global Structural Information
aims to learn a global representation matrix W ∈ R|V |×d for
the complete graph, whose i-th row Wi is a d-dimensional
vector representing the vertex vi in the graph G where the
global structural information of the graph can be captured
in such vectors.

In this paper, global structural information serves two
functions: 1) the capture of long distance relationship be-
tween two different vertices and 2) the consideration of dis-
tinct connections in terms of different transitional steps.
This would be further illustrated later.

As we have discussed earlier, we believe the k-step (with
varying k) relational information from the graph needs to
be captured when constructing such global graph representa-
tions. To validate this point, Figure 1 gives some illustrative
examples showing the importance of k-step (for k=1,2,3,4)
relational information that needs to be captured between
two vertices A1 and A2. In the figure, a thick line indicates
a strong relation between two vertices, while a thin line in-
dicates a weaker relation. Here, (a) and (e) show the impor-
tance of capturing the simple 1-step information between
the two vertices which are directly connected to each other,
where one has a stronger relation and the other has a weaker
relation. In (b) and (f), 2-step information is shown, where
in (b) both vertices share many common neighbors, and in
(f) only one neighbor is shared between them. Clearly, 2-
step information is important in capturing how strong the
connection between the two vertices is – the more common
neighbors they share, the stronger the relation between them
is. In (c) and (g), the importance of 3-step information is
illustrated. Specifically, in (g), despite the strong relation
between A1 and B, the relation between A1 and A2 can be
weakened due to the two weaker edges connecting B and C,
as well as C and A2. In contrast, in (c), the relation between
A1 and A2 remains strong because of the large number of
common neighbors between B and A2 which strengthened

their relation. Clearly such 3-step information is essential to
be captured when learning a good graph representation with
global structural information. Similarly, the 4-step informa-
tion can also be crucial in revealing the global structural
properties of the graph, as illustrated in (d) and (h). Here,
in (d), the relation between A1 and A2 is clearly strong,
while in (h) the two vertices are unrelated since there does
not exist a path from one vertex to the other. In the absence
of 4-step relational information, such important distinctions
can not be properly captured.

A

B

C1 C2 C3 C4

(a)

A

B

C1

C2 C3

C4

(b)

Figure 2: The importance of maintaining different
k-step information separately in the graph represen-
tations.

We also additionally argue that it is essential to treat
different k-step information differently when learning graph
representations. We present one simple graph in (a) of Fig-
ure 2. Let us focus on learning the representation for the
vertex A in the graph. We can see that A receives two types
of information when learning its representation: 1-step in-
formation from B, as well as 2-step information from all C
vertices. We note that if we do not distinguish these two dif-
ferent types of information, we can construct an alternative
graph as shown in (b) of Figure 2, where A receives exactly
the same information as (a), but has a completely different
structure.

In this paper, we propose a novel framework for learning
accurate graph representations, integrating various k-step
information which together captures the global structural
information associated with the graph.

3.2 Loss Function On Graph
We discuss our loss function used for learning the graph

representations with global structural information in this
section. Assume we are now given a graph with a collec-
tion of vertices and edges. Consider a vertex w together
with another vertex c. In order for us to learn global repre-
sentations to capture their relations, we need to understand
how strongly these two vertices are connected to each other.
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Let us begin with a few questions. Does there exist a path
from w to c? If so, if we randomly sample a path starting
with w, how likely is it for us to reach c (possibly within
a fixed number of steps)? To answer such questions, we
first use the term pk(c|w) to denote the probability for a
transition from w to c in exactly k steps. We already know
what are the 1-step transition probabilities, to compute the
k-step transition probabilities we introduce the following k-
step probability transition matrix

Ak = A · · ·A︸ ︷︷ ︸
k

We can observe that Ak
i,j exactly refers to the transition

probability from vertex i to vertex j where the transition
consists of exactly k step(s). This directly leads to:

pk(c|w) = Ak
w,c

where Ak
w,c is the element from w-th row and c-th column

of the matrix Ak.
Let us consider a particular k first. Given a graph G,

consider the collection of all paths consisting of k steps that
can be sampled from the graph which start with w and end
with c (here we call w “current vertex”, and c “context ver-
tex”). Our objective aims to maximize: 1) the probability
that these pairs come from the graph, and 2) the probability
that all other pairs do not come from the graph.

Motivated by the skip-gram model by Mikolov et al. [18],
we employ noise contrastive estimation (NCE), which is pro-
posed by Gutmann et al. [11], to define our objective func-
tion. Following a similar discussion presented in [16], we first
introduce our k-step loss function defined over the complete
graph as follows:

Lk =
∑
w∈V

Lk(w)

where

Lk(w) =

(∑
c∈V

pk(c|w) log σ(~w · ~c)

)
+λEc′∼pk(V )[log σ(−~w·~c′)]

Here pk(c|w) describes the k-step relationship between w
and c (the k-step transition probability from w to c), σ(·)
is sigmoid function defined as σ(x) = (1 + e−x)−1, λ is a
hyper-parameter indicating the number of negative samples,
and pk(V ) is the distribution over the vertices in the graph.
The term Ec′∼pk(V )[·] is the expectation when c′ follows the
distribution pk(V ), where c′ is an instance obtained from
negative sampling. This term can be explicitly expressed as:

Ec′∼pk(V )[log σ(−~w · ~c′)]

= pk(c) · log σ(−~w · ~c) +
∑

c′∈V \{c}

pk(c′) · log σ(−~w · ~c′)

This leads to a local loss defined over a specific (w,c):

Lk(w, c) = pk(c|w) · log σ(~w · ~c) + λ · pk(c) · log σ(−~w · ~c)

In this work, we set a maximal length for each path we
consider. In other words, we assume 1 ≤ k ≤ K. In fact,
when k is large enough, the transition probabilities converge
to certain fixed values. The distribution pk(c) can be com-
puted as follows:

pk(c) =
∑
w′

q(w′)pk(c|w′) =
1

N

∑
w′

Ak
w′,c

Note that here N is the number of vertices in graph G,
and q(w′) is the probability of selecting w′ as the first vertex
in the path, which we assume follow a uniform distribution,
i.e., q(w′) = 1/N . This leads to:

Lk(w, c) = Ak
w,c · log σ(~w · ~c) +

λ

N

∑
w′

Ak
w′,c · log σ(−~w · ~c)

Following [16], we define e = ~w · ~c, and setting ∂Lk
∂e

= 0.
This yields the following:

~w · ~c = log

(
Ak

w,c∑
w′ Ak

w′,c

)
− log(β)

where β = λ/N .
This concludes that we essentially need to factorize the

matrix Y into two matrices W and C, where each row of W
and each row of C consists of a vector representation for the
vertex w and c respectively, and the entries of Y are:

Y k
i,j = W k

i · Ck
j = log

(
Ak

i,j∑
tA

k
t,j

)
− log(β)

Now we have defined our loss function and showed that
optimizing the proposed loss essentially involves a matrix
factorization problem.

3.3 Optimization with Matrix Factorization
Following the work of Levy et al. [16], to reduce noise,

we replace all negative entries in Y k with 0. This gives us a
positive k-step log probabilistic matrix Xk, where

Xk
i,j = max(Y k

i,j , 0)

While various techniques for matrix factorization exist, in
this work we focus on the popular singular value decompo-
sition (SVD) method due to its simplicity. SVD has been
shown successful in several matrix factorization tasks [9, 14],
and is regarded as one of the important methods that can be
used for dimensionality reduction. It was also used in [16].

For the matrix Xk, SVD factorizes it as:

Xk = UkΣk(V k)T

where U and V are orthonormal matrices and Σ is a diagonal
matrix consisting of an ordered list of singular values.

We can approximate the original matrix Xk with Xk
d :

Xk ≈ Xk
d = Uk

d Σk
d(V k

d )T

where Σk
d is the matrix composed by the top d singular val-

ues, and Uk
d and V k

d are first d columns of Uk and V k, re-
spectively (which are the first d eigenvector of XXT and
XTX respectively).

This way, we can factorize our matrix Xk as:

Xk ≈ Xk
d = W kCk

where

W k = Uk
d (Σk

d)
1
2 , Ck = (Σk

d)
1
2 V k

d

T

The resulting W k gives representations of current vertices
as its column vectors, and Ck gives the representations of
context vertices as its column vectors [6, 5, 30]. The fi-
nal matrix W k is returned from the algorithm as the low-d
representations of the vertices which capture k-step global
structural information in the graph.
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In our algorithm we consider all k-step transitions with
all k = 1, 2, . . . ,K, where K is a pre-selected constant. In
our algorithm, we integrate all such k-step information when
learning our graph representation, as to be discussed next.

Note that here we are essentially finding a projection from
the row space of Xk to the row space of W k with a lower
rank. Thus alternative approaches other than the popular
SVD can also be exploited. Examples include incremental
SVD [22], independent component analysis (ICA) [7, 13],
and deep neural networks [12]. Our focus in this work is on
the novel model for learning graph representations, so we
do not pursue any alternative methods. In fact, if alterna-
tive method such as sparse auto-encoder is used at this step,
it becomes relatively harder to justify whether the empiri-
cal effectiveness of our representations is due to our novel
model, or comes from any non-linearity introduced in this
dimensionality reduction step. To maintain the consistency
with Levy et al. [16], we only employed SVD in this work.

4. ALGORITHM
We detail our learning algorithm in this section. In gen-

eral, graph representations are extracted for other applica-
tions as features, such as classification and clustering. An
effective way to encode k-step representation in practice is to
concatenate the k-step representation as a global feature for
each vertex, since each different step representation reflects
different local information. Table 1 shows the overall algo-
rithm, and we explain the essential steps of our algorithm
here.

Step 1. Get k-step transition probability matrix
Ak for each k = 1, 2, . . . ,K.

As shown in Section 3, given a graph G, we can calcu-
late the k-step transition probability matrix Ak through the
product of inverse of degree matrix D and adjacent matrix
S. For a weighted graph, S is a real matrix, while for an
unweighted graph, S is a binary matrix. Our algorithm is
applicable to both cases.

Step 2. Get each k-step representation
We get k-step log probability matrix Xk, then subtract

each entry by log (β), and replace the negative entries by
zeros. After that, we construct the representational vectors
as rows of W k, where we introduce a solution to factorize the
positive log probability matrix Xk using SVD. Finally, we
get all k-step representations for each vertex on the graph.

Step 3. Concatenate all k-step representations
We concatenate all k-step representations to form a global

representation, which can be used in other tasks as features.

5. SKIP-GRAM MODEL AS A SPECIAL CASE
OF GRAREP

GraRep aims to learn representations for graphs where
we optimize the loss function based on matrix factorization.
On the other hand, SGNS has been shown to be successful
in handling linear structures such as natural language sen-
tences. Is there any intrinsic relationship between them? In
this section, we provide a view of SGNS as a special case of
the GraRep model.

5.1 Explicit Loss of Skip-gram Model on Graph
SGNS aims at representing words in linear sequences, so

we need to translate a graph structure into linear structures.
Deepwalk reveals an effective way with uniform sampling

Table 1: Overall Algorithm

GraRep Algorithm

Input
Adjacency matrix S on graph
Maximum transition step K
Log shifted factor β
Dimension of representation vector d

1. Get k-step transition probability matrix Ak

Compute A = D−1S
Calculate A1, A2, . . . , AK , respectively
2. Get each k-step representations
For k = 1 to K

2.1 Get positive log probability matrix
calculate Γk

1 ,Γ
k
2 , . . . ,Γ

k
N (Γk

j =
∑

pA
k
p,j) respectively

calculate {Xk
i,j}

Xk
i,j = log

(
Ak

i,j

Γk
j

)
− log(β)

assign negative entries of Xk to 0
2.2 Construct the representation vector W k

[Uk,Σk, (V k)T ] = SV D(Xk)

W k = Uk
d (Σk

d)
1
2

End for
3. Concatenate all the k-step representations
W = [W 1,W 2, . . . ,WK ]

Output
Matrix of the graph representation W

(truncated random walk). This method first samples uni-
formly a random vertex from the graph, then walks ran-
domly to one of its neighbors and repeats this process. If the
length of the vertex sequence reaches a certain preset value,
then stop and start generating a new sequence. This pro-
cedure can be used to produce a large number of sequences
from the graph.

Essentially, for an unweighted graph, this strategy of uni-
form sampling works, while for a weighted graph, a proba-
bilistic sampling method based on the weights of the edges is
needed, which is not employed in DeepWalk. In this paper,
we propose an Enhanced SGNS (E-SGNS) method suitable
for weighted graphs. We also note that DeepWalk optimizes
an alternative loss function (hierarchical softmax) that is
different from negative sampling.

First, we consider total K-step loss L on whole graph

L = f(L1, L2, . . . , LK)

where f(·) is a linear combination of its arguments defined
as follows:

f(ϕ1, ϕ2, · · · , ϕK) = ϕ1 + ϕ2 + · · ·+ ϕK

We focus on the loss of a specific pair (w,c) which are i-
th and j-th vertex in the graph. Similar to Section 3.2, we
assign partial derivative to 0, and get

Y E−SGNS
i,j = log

(
Mi,j∑
tMt,j

)
− log(β)

where M is transition probability matrix within K step(s),
and Mi,j refers to transition probability from vertex i to
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vertex j. Y E−SGNS
i,j is a factorized matrix for E-SGNS, and

M = A1 +A2 + · · ·+AK

The difference between E-SGNS and GraRep model is on the
definition of f(·). E-SGNS can be considered as a linear com-
bination of K-step loss, and each loss has an equal weight.
Our GraRep model does not make such a strong assump-
tion, but allows their (potentially non-linear) relationship
to be learned from data in practice. Intuitively, different
k-step transition probabilities should have different weights,
and linear combination of these may not achieve desirable
results for heterogeneous network data.

5.2 Intrinsic Relation Between Sampling and
Transition Probabilities

In our approach, we used transition probabilities to mea-
sure relationship between vertices. Is this reasonable? In
this subsection, we articulate the intrinsic relation between
sampling and transition probabilities.

Among the sequences generated by random walk, we as-
sume vertex w occurs total times:

#(w) = αwγK

where γ is the total length of sequences and αw is the prob-
ability of observing the vertex w in such all sequences. We
regard vertex w as the current vertex, then the expected
number of times that we see c1 as its direct neighbor (1-step
away from w) is:

#(w, c1) = αwγK · p1(c|w)

This holds for both uniform sampling for unweighted graphs
or our proposed probabilistic sampling for weighted graphs.

Further, we analyze the expected number of times of co-
occurrence for w and c of context window size 2,

#(w, c2) = αwγK
∑
c′

p(c2|c′) · p(c′|w) = αwγK · p2(c|w)

where c′ can be any vertex bridging w and c2. That is, c′ is
shared neighbor between w and c2. Similarly, we can derive
the equations for k = 3, 4, · · · ,K:

#(w, c3) = αwγK · p3(c|w)

...

#(w, cK) = αwγK · pK(c|w)

then we add them up and divide both sides by K, leading
to:

#(w, c) = αwγ

K∑
k=1

pk(c|w)

where #(w, c) is the expected co-occurrence count between
w and c within K step(s).

According to definition of Mw,c, we can get

#(w, c) = αwγMw,c

Now, we can also compute the expected number of times
we see c as the context vertex, #(c):

#(c) =
∑
w

αwγMw,c

where we consider the transitions from all possible vertices to
c. To find the relationship with SGNS model, we consider a

special case for αw here. If we assume αw follows an uniform
distribution, we have αw = 1

N
. We plug these expected

counts into the equation of Y E−SGNS
i,j , and we arrive at:

Y E−SGNS
w,c = log

(
#(w, c) · |D|
#(w) ·#(c)

)
− log(λ)

where D is the collection of all observed pairs in sequences,
that is, |D| = γK. This matrix Y E−SGNS becomes exactly
the same as that of SGNS as described in [16].

This shows SGNS is essentially a special version of our
GraRep model that deals with linear sequences which can
be sampled from graphs. Our approach has several advan-
tages over the slow and expensive sampling process, which
typically involves several parameters to tune, such as maxi-
mum length of linear sequence, sampling frequency for each
vertex, and so on.

6. EXPERIMENTAL DESIGN
In this section, we assess the effectiveness of our GraRep

model through experiments. We conduct experiments on
several real-word datasets for several different tasks, and
make comparisons with baseline algorithms.

6.1 Datasets and Tasks
In order to demonstrate the performance of GraRep, we

conducted the experiments across three different types of
graphs – a social network, a language network and a cita-
tion network, which include both weighted and unweighted
graphs. We conducted experiments across three different
types of tasks, including clustering, classification, and vi-
sualization. As we mentioned in earlier sections, this work
focuses on proposing a novel framework for learning good
representation of graph with global structural information,
and aims to validate the effectiveness of our proposed model.
Thus we do not employ alternative more efficient matrix
factorization methods apart from SVD, and focused on the
following three real-world datasets in this section.

1. 20-Newsgroup1 is a language network, which has ap-
proximately 20,000 newsgroup documents and is partitioned
by 20 different groups. In this network, each document is
represented by a vector with tf-idf scores of each word, and
the cosine similarity is used to calculate the similarity be-
tween two documents. Based on these similarity scores of
each pair of documents, a language network is built. Fol-
lowing [29], in order to show the robustness of our model,
we also construct the following 3 graphs built from 3, 6 and
9 different newsgroups respectively (note that NG refers to
“Newsgroups”):

3-NG:comp.graphics, comp.graphics and talk.politics.guns;
6-NG: alt.atheism, comp.sys.mac.hardware, rec.motorcycles,
rec.sport.hockey, soc.religion.christian and talk.religion.misc;
9-NG: talk.politics.mideast, talk.politics.misc, comp.os.ms-
windows.misc, sci.crypt, sci.med, sci.space, sci.electronics,
misc.forsale, and comp.sys.ibm.pc.hardware

Besides randomly sampling 200 documents from a topic
as described in [29], we also conduct experiment on all doc-
uments as comparison. The topic label on each document is
considered to be true.

This language network is a fully connected and weighted
graph, and we will demonstrate the results of clustering,
using graph representation as features.

1qwone.com/˜jason/20Newsgroups/

896



2. Blogcatalog2 is a social network, where each vertex
indicates one blogger author, and each edge corresponds to
the relationship between authors. 39 different types of topic
categories are presented by authors as labels.

Blogcatalog is an unweighted graphs, and we test the per-
formance of the learned representations on the multi-label
classification task, where we classify each author vertex into
a set of labels. The graph representations generated from
our model and each baseline algorithm are considered as
features.

3. DBLP Network3 is a citation network. We extract
author citation network from DBLP, where each vertex in-
dicates one author and the number of references from one
author to the other is recorded by the weight of edge be-
tween these two authors. Following [26], we totally select 6
different popular conferences and assign them into 3 groups,
where WWW and KDD are grouped as data mining, NIPS
and ICML as machine learning, and CVPR and ICCV as
computer vision. We visualize the learned representations
from all systems using a visualisation tool t-SNE [31], which
provides both qualitative and quantitative results for the
learned representations. We give more details in Section
6.4.3.

To summarize, in this paper we conduct experiments on
both weighted and unweighted graphs, and both sparse and
dense graphs, where three different types of learning tasks
are carried out. More details of the graph we used are shown
in Table 2.

6.2 Baseline Algorithms
We use the following methods of graph representation as

baseline algorithms.

1. LINE [25]. LINE is a recently proposed method for
learning graph representations on large-scale informa-
tion networks. LINE defines a loss function based on
1-step and 2-step relational information between ver-
tices. One strategy to improve the performance of
vertices with small degrees is to make graph denser
by expanding their neighbors. LINE will get the best
performance, if concatenating the representation of 1-
step and 2-step relational information and tuning the
threshold of maximum number of vertices.

2. DeepWalk [20]. DeepWalk is a method that learns
the representation of social networks. The original
model only works for unweighted graph. For each ver-
tex, truncated random walk is used to translate graph
structure into linear sequences. The skip-gram model
with hierarchical softmax is used as the loss function.

3. E-SGNS. Skip-gram is an efficient model that learns
the representation of each word in large corpus [18].
For this enhanced version, we first utilize uniform sam-
pling for unweighted graph and probabilistic sampling
proportional to weight of edges for weighted graph, to
generate linear vertex sequences, and then introduce
SGNS to optimize. This method can be regarded as a
special case of our model, where different representa-
tional vector of each k-step information is averaged.

2leitang.net/code/social-dimension/data/blogcatalog.mat
3aminer.org/billboard/citation

4. Spectral Clustering [23]. Spectral clustering is a
reasonable baseline algorithm, which aims at minimiz-
ing Normalized Cut (NCut). Like our method, Spec-
tral clustering also factorize a matrix, but it focuses on
a different matrix of the graphs – the Laplacian Matrix.
Essentially, the difference between spectral clustering
and E-SGNS lies on their different loss function.

6.3 Parameter Settings
As suggested in [25], for LINE, we set the mini-batch size

of stochastic gradient descent (SGD) as 1, learning rate of
starting value as 0.025, the number of negative samples as
5, and the total number of samples as 10 billion. We also
concatenate both 1-step and 2-step relational information
to form the representations and employ the reconstruction
strategy for vertices with small degrees to achieve the opti-
mal performance. As mentioned in [20], for DeepWalk and
E-SGNS, we set window size as 10, walk length as 40, walks
per vertex as 80. According to [25], LINE yielded better
results when the learned graph representations are L2 nor-
malized, while DeepWalk and E-SGNS can achieve optimal
performance without normalization. For GraRep, we found
the L2 normalization yielded better results. We reported
all the results based on these findings for each system ac-
cordingly. For a fair comparison, the dimension d of repre-
sentations is set as 128 for Blogcatalog network and DBLP
network as used in [25] and is set as 64 for 20-NewsGroup
network as used in [29]. For GraRep, we set β = 1

N
and max-

imum matrix transition step K=6 for Blogcatalog network
and DBLP network and K=3 for 20-NewsGroup network.
To demonstrate the advantage of our model which captures
global information of the graph, we also conducted exper-
iments under various parameter settings for each baseline
systems, which are discussed in detail in the next section.

6.4 Experimental Results
In this section, we present empirical justifications that our

GraRep model can integrate different k-step local relational
information into a global graph representation for different
types of graphs, which can then be effectively used for dif-
ferent tasks. We make the source code of GraRep available
at http://shelson.top/.

6.4.1 20-Newsgroup Network
We first conduct an experiment on a language network

through a clustering task by employing the learned repre-
sentations in a k-means algorithm [2].

To assess the quality of the results, we report the aver-
aged Normalized Mutual Information (NMI) score [24] over
10 different runs for each system. To understand the effect
of different dimensionality d in the end results, we also show
the results when dimension d is set to 192 for DeepWalk,
E-SGNS and Spectral Clustering. For LINE, we employ the
reconstruction strategy proposed by their work by adding
neighbors of neighbors as additional neighbors to improve
performance. We set k-max=0, 200, 500, 1000 for experi-
ments, where k-max is a parameter that is used to control
how the higher-order neighbors are added to each vertex in
the graph.

As shown in Table 3, the highest results are highlighted
in bold for each column. We can see that GraRep con-
sistently outperforms other baseline methods for this task.
For DeepWalk, E-SGNS and Spectral Clustering, increasing
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Table 2: Statistics of the real-world graphs
Language Network Social Network Citation Network

Name
20-NewsGroup 20-NewsGroup

Blogcatalog
DBLP

(200 samples) (all data) (author citation)
Type weighted weighted unweighted weighted
#(V) 600, 1200 and 1800 1,720, 3,224 and 5,141 10,312 7,314
#(E) Fully connected Fully connected 333,983 72,927

Avg. degree — — 64.78 19.94
#Labels 3, 6 and 9 3, 6 and 9 39 3

Task Clustering Clustering Classification Visualization

Table 3: Results on 20-NewsGroup
200 samples all data

Algorithm 3NG(200) 6NG(200) 9NG(200) 3NG(all) 6NG(all) 9NG(all)

GraRep 81.12 67.53 59.43 81.44 71.54 60.38
LINE (k-max=0) 80.36 64.88 51.58 80.58 68.35 52.30

LINE (k-max=200) 78.69 66.06 54.14 80.68 68.83 53.53
DeepWalk 65.58 63.66 48.86 65.67 68.38 49.19

DeepWalk (192dim) 60.89 59.89 47.16 59.93 65.68 48.61
E-SGNS 69.98 65.06 48.47 69.04 67.65 50.59

E-SGNS (192dim) 63.55 64.85 48.65 66.64 66.57 49.78
Spectral Clustering 49.04 51.02 46.92 62.41 59.32 51.91

Spectral Clustering (192dim) 28.44 27.80 36.05 44.47 36.98 47.36
Spectral Clustering (16dim) 69.91 60.54 47.39 78.12 68.78 57.87

Table 4: Results on Blogcatalog
Metric Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1

GraRep 38.24 40.31 41.34 41.87 42.60 43.02 43.43 43.55 44.24
LINE 37.19 39.82 40.88 41.47 42.19 42.72 43.15 43.36 43.88

DeepWalk 35.93 38.38 39.50 40.39 40.79 41.28 41.60 41.93 42.17
E-SGNS 35.71 38.34 39.64 40.39 41.23 41.66 42.01 42.16 42.25

Spectral Clustering 37.16 39.45 40.22 40.87 41.27 41.50 41.48 41.62 42.12

Macro-F1

GraRep 23.20 25.55 26.69 27.53 28.35 28.78 29.67 29.96 30.93
LINE 19.63 23.04 24.52 25.70 26.65 27.26 27.94 28.68 29.38

DeepWalk 21.02 23.81 25.39 26.27 26.85 27.36 27.67 27.96 28.41
E-SGNS 21.01 24.09 25.61 26.59 27.64 28.08 28.33 28.34 29.26

Spectral Clustering 19.26 22.24 23.51 24.33 24.83 25.19 25.36 25.52 26.21

(a) Spectral Clustering (b) DeepWalk (c) E-SGNS (d) LINE (e) GraRep

Figure 3: Visualization of author citation network. Each point indicates one author. Green: Data Mining,
magenta: computer vision and blue: Machine Learning.

the dimension d of representations does not appear to be
effective in improving the performance. We believe this is
because a higher dimension does not provide different com-
plementary information to the representations. For LINE,
the reconstruction strategy does help, since it can capture
additional structural information of the graph beyond 1-step
and 2-step local information.

It is worth mentioning that GraRep and LINE can achieve
good performance with a small graph. We believe this is be-
cause both approaches can capture rich local relational in-
formation even when the graph is small. Besides, for tasks
with more labels, such as 9NG, GraRep and LINE can pro-
vide better performances than other methods, with GraRep
providing the best. An interesting finding is that Spectral
Clustering arrives at its best performance when setting di-
mension d to 16. However, for all other algorithms, their
best results are obtained when d is set to 64. We show these
results in Figure 5 when we assess the sensitivity of param-
eters.

Due to limited space, we do not report the detailed results
with d=128 and d=256 for all baseline methods, as well as
k-max=500, 1000 and without reconstruction strategy for
LINE, since these results are no better than the results pre-
sented in Table 3. In Section 6.5, we will further discuss the
issue of parameter sensitivity.

6.4.2 Blogcatalog Network
In this experiment, we focus on a supervised task on a so-

cial network. We evaluate the effectiveness of different graph
representations through a multi-label classification task by
regarding the learned representations as features.

Following [20, 27], we use the LibLinear package [10] to
train one-vs-rest logistic regression classifiers, and we run
this process for 10 rounds and report the averaged Micro-
F1 and Macro-F1 measures. For each round, we randomly
sample 10% to 90% of the vertices and use these samples
for training, and use the remaining vertices for evaluation.
As suggested in [25], we set k-max as 0, 200, 500 and 1000,
respectively, and we report the best performance with k-
max=500.

Table 4 reports the results of GraRep and each baseline al-
gorithm. The highest performance is highlighted in bold for
each column which corresponds to one particular train/test
split. Overall, GraRep significantly outperforms other meth-
ods, especially under the setting where only 10% of the ver-
tices are used for training. This indicates different types
of rich local structural information learned by the GraRep
model can be used to complement each other to capture
the global structural properties of the graph, which serves
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Table 5: Final KL divergence for the DBLP dataset
Algorithm GraRep LINE DeepWalk E-SGNS

KL divergence 1.0070 1.0816 1.1115 1.1009

as a distinctive advantage over existing baseline approaches,
especially when the data is relatively scarce.

6.4.3 DBLP Network
In this experiment, we focus on visualizing the learned rep-

resentations by examining a real citation network – DBLP.
We feed the learned graph representations into the standard
t-SNE tool [31] to lay out the graph, where the authors from
the same research area (one of data mining, machine learn-
ing or computer vision, see Section 6.1) share the same color.
The graphs are visualized on a 2-dimensional space and the
Kullback-Leibler divergence is reported [31], which captures
the errors between the input pairwise similarities and their
projections in the 2-dimensional map as displayed (a lower
KL divergence score indicates a better performance).

Under the help of t-SNE toolkit, we set the same param-
eter configuration and import representations generated by
each algorithm. From Figure 3, we can see that the lay-
out using Spectral Clustering is not very informative, since
vertices of different colors are mixed with each other. For
DeepWalk and E-SGNS, results look much better, as most
vertices of the same color appear to form groups. However,
vertices still do not appear in clearly separable regions with
clear boundaries. For LINE and GraRep, the boundaries
of each group become much clearer, with vertices of differ-
ent colors appearing in clearly distinguishable regions. The
results for GraRep appear to be better, with clearer bound-
aries for each regions as compared to LINE.

Table 5 reports the KL divergence at the end of iterations.
Under the same parameter setting, a lower KL divergence
indicates a better graph representation. From this result, we
also can see that GraRep yields better representations than
all other baseline methods.

6.5 Parameter Sensitivity
We discuss the parameter sensitivity in this section. Specif-

ically, we assess the how the different choices of the maximal
k-step size K, as well as the dimension d for our represen-
tations can affect our results.
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Figure 4: Performance over steps, K

Figure 4 shows the Micro-F1 and Macro-F1 scores over
different choices of K on the Blogcatalog data. We can ob-
serve that the setting K=2 has a significant improvement
over the setting K=1, and K=3 further outperforms K=2.
This confirms that different k-step can learn complementary
local information. In addition, as mentioned in Section 3,
when k is large enough, learned k-step relational informa-
tion becomes weak and shifts towards a steady distribution.

Empirically we can observe that the performance of K=7
is no better than K=6. In this figure, for readability and
clarity we only present the results of K=1,2,3,6 and 7. We
found the performance of K = 4 is slightly better than K=3,
while the results for K=5 is comparable to K=4.
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Figure 5: Performance over dimensions, d

Figure 5 shows the NMI scores of each algorithm over dif-
ferent settings of the dimension d on 3NG and 9NG data.
We can observe that GraRep consistently outperforms other
baseline algorithms which learn representations with the same
dimension. This set of experiments serves as an additional
supplement to Table 3. Interestingly, all algorithms can ob-
tain the optimal performance with d = 64. As we increase d
from 64 to larger values, it appears that the performances of
all the algorithms start to drop. Nevertheless, our GraRep
algorithm is still superior to the baseline systems across dif-
ferent d values.
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Figure 6: Running time as a function of a) dimension
and b) size of graph.

Figure 6 shows the running time over different dimensions
as well as over different graph sizes. In Figure 6(a), we set
K from 1 to 7 where each complementary feature vector has
a dimension of 128. This set of experiments is conducted
on the Blogcatalog dataset which contains around 10,000
vertices. It can be seen that the running time increases ap-
proximately linearly as the dimension increases. In Figure
6(b), we analyze running time with respect to graph sizes.
This set of experiment is conducted on different size of the
20-NewsGroup dataset. The result shows a significant in-
crease of running time as graph size increases. The reason
resulting in the large increase in running time is mainly due
to high time complexity involved in the computation of the
power of a matrix and the SVD procedure.

7. CONCLUSIONS
In this paper, GraRep, a novel model for learning better

graph representations is proposed. Our model, with our k-
step loss functions defined on graphs which integrate rich
local structural information associated with the graph, cap-
tures the global structural properties of the graph. We also
provide mathematical derivations justifying the model and
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establish the connections to previous research efforts. Em-
pirically, the learned representations can be effectively used
as features in other learning problems such as clustering
and classification. This model comes with one limitation:
the expensive computation of the power of a matrix and
SVD involved in the learning process. Future work would
include the investigation of efficient and online methods to
approximate matrix algebraic manipulations, as well as in-
vestigation of alternative methods by employing deep ar-
chitectures for learning low-dimensional representations in
place of SVD.
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