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Sentence regression is a type of extractive summarization that achieves state-of-the-art performance and is

commonly used in practical systems. The most challenging task within the sentence regression framework

is to identify discriminative features to represent each sentence. In this article, we study the use of sentence

relations, e.g., Contextual Sentence Relations (CSR), Title Sentence Relations (TSR), and Query Sentence Rela-

tions (QSR), so as to improve the performance of sentence regression. CSR, TSR, and QSR refer to the relations

between a main body sentence and its local context, its document title, and a given query, respectively.

We propose a deep neural network model, Sentence Relation-based Summarization (SRSum), that consists

of five sub-models, PriorSum, CSRSum, TSRSum, QSRSum, and SFSum. PriorSum encodes the latent semantic

meaning of a sentence using a bi-gram convolutional neural network. SFSum encodes the surface information

of a sentence, e.g., sentence length, sentence position, and so on. CSRSum, TSRSum, and QSRSum are three

sentence relation sub-models corresponding to CSR, TSR, and QSR, respectively. CSRSum evaluates the ability

of each sentence to summarize its local contexts. Specifically, CSRSum applies a CSR-based word-level and

sentence-level attention mechanism to simulate the context-aware reading of a human reader, where words

and sentences that have anaphoric relations or local summarization abilities are easily remembered and paid

attention to. TSRSum evaluates the semantic closeness of each sentence with respect to its title, which usually

reflects the main ideas of a document. TSRSum applies a TSR-based attention mechanism to simulate people’s

This paper is a substantially extended version of Ren et al. (2017). The additions are three-fold. First, we propose a new

summarization model by incorporating two sub-models that consider title-sentence relations and query-sentence relations.

Second, the new model can simulate people’s reading ability with the main idea (title) and reading intention (query) in mind

by introducing two attention mechanisms. Third, more than half of the experiments reported in the paper were not in Ren

et al. (2017) and all involved tables and figures are either new additions to the article or report new results.
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reading ability with the main idea (title) in mind. QSRSum evaluates the relevance of each sentence with given

queries for the query-focused summarization. QSRSum applies a QSR-based attention mechanism to simulate

the attentive reading of a human reader with some queries in mind. The mechanism can recognize which parts

of the given queries are more likely answered by a sentence under consideration. Finally as a whole, SRSum

automatically learns useful latent features by jointly learning representations of query sentences, content

sentences, and title sentences as well as their relations.

We conduct extensive experiments on six benchmark datasets, including generic multi-document summa-

rization and query-focused multi-document summarization. On both tasks, SRSum achieves comparable or

superior performance compared with state-of-the-art approaches in terms of multiple ROUGE metrics.

CCS Concepts: • Information systems → Content analysis and feature selection; • Computing

methodologies → Information extraction;

Additional Key Words and Phrases: Extractive summarization, sentence relations, neural network, attentive

pooling
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1 INTRODUCTION

Extractive summarization aims to generate a short text summary for a long document or a set of
documents by selecting salient sentences in the document(s) (Over and Yen 2004). In recent years,
sentence regression has emerged as an extractive summarization framework that achieves state-of-
the-art performance (Cao et al. 2015b; Wan et al. 2015); it has been widely used in practical systems
(Hong and Nenkova 2014; Hu and Wan 2013; Ren et al. 2016a; Wan and Zhang 2014). There are two
major components in sentence regression: sentence scoring and sentence selection. The former scores
a sentence to measure its importance, and the latter chooses sentences to generate a summary by
considering both sentence saliency and redundancy.

Sentence scoring has been extensively investigated in extractive summarization. Many ap-
proaches (Cao et al. 2015b; Ouyang et al. 2007) directly measure the salience of sentences whereas
others (Gillick and Favre 2009; Li et al. 2013) first score words (or bi-grams) and then combine
these scores to score sentences. Traditional scoring methods incorporate feature engineering as a
necessary but labor-intensive task. In Table 1, we list the scores achieved by t-SR (Ren et al. 2016a),
a traditional feature engineering-based sentence regression method for extractive summarization
that achieves state-of-the-art performance. We list an upper bound on the performance of sentence
regression, which is obtained by scoring sentences against human written summaries. There is a
sizable gap in performance between t-SR and the upper bound. We hypothesize that the reason
for this is that none of t-SR’s features tries to encode semantic information.

Recent neural network-based methods for abstractive summarization have addressed this mat-
ter (Chopra et al. 2016; Nallapati et al. 2016; Rush et al. 2015). Extracting semantic features via
neural networks has received increased attention, also for extractive summarization (Cao et al.
2015a, 2015b; Cheng and Lapata 2016) . PriorSum (Cao et al. 2015b) is a recent example. It uses
Convolutional Neural Networks (CNN) to encode each sentence into a vector representation and
uses that vector as a prior that quantifies to which degree a sentence is appropriate for inclusion
in summary, without consideration of its context. They also propose a ranking framework upon
recursive neural networks (RNNs) (namely, R2N2) (Cao et al. 2015a). R2N2 uses RNNs to encode

ACM Transactions on Information Systems, Vol. 36, No. 4, Article 39. Publication date: April 2018.
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Table 1. Multi-Document Summarization

Dataset Approach ROUGE-1 ROUGE-2

DUC 2001
t-SR 34.82 7.76
Upper bound 40.82 14.76

DUC 2002
t-SR 37.33 8.98
Upper bound 43.78 15.97

DUC 2004
t-SR 37.74 9.60
Upper bound 41.75 13.73

DUC 2005
t-SR 38.40 7.60
Upper bound 45.34 14.11

DUC 2006
t-SR 40.35 9.09
Upper bound 49.17 17.42

DUC 2007
t-SR 42.42 11.20
Upper bound 50.83 19.30

ROUGE (%) of sentence regression (with greedy-based sentence selection).

Upper bounds are determined by scoring sentences against human written

summaries.

each sentence into a vector representation by considering its syntactic structure reflected by its
parse tree. Both PriorSum and R2N2 show great improvements over traditional feature engineer-
ing methods, which proves that latent semantic features learned by neural networks are effective.
Importantly, most methods, including PriorSum and R2N2, extract latent features from stand-alone
sentences without considering sentence relations.

While understanding the meaning of a sentence is important to generate a good summary,
the meaning of a sentence is not independent of the meaning of other sentences and sometimes
it is incomplete without considering its relations with other sentences. This statement is hardly
controversial since each sentence usually only expresses one view or states one fact, which may
be hard to grasp without knowing the background reflected in the related sentences. Therefore,
we argue that sentence saliency depends both on its own meaning and on relations with
other sentences. Christensen et al. (2013) demonstrate the importance of considering discourse
relations among sentences in multi-document summarization. Yasunaga et al. (2017) propose a
multi-document summarization system that exploits the representational power of deep neural
networks and the sentence relation information encoded in graph representations of document
clusters. However, they do not specify different sentence relations and model the general relations
between each pair of sentences. In this article, we study three types of relations between sentences,
contextual sentence relations (CSR), title sentence relations (TSR), and query sentence relations (QSR),
to improve the performance of sentence regression. CSR refers to the relation between a main
body sentence and its local contexts, i.e., its surrounding sentences. Important sentences are
usually those that can summarize their local contexts. Figure 1(a) illustrates a general-to-specific
paragraph structure, where the first sentence (with the highest color depth) is a general summary
of the event that is explained in detail by the following sentences. Figure 1(b) illustrates a
specific-to-general paragraph structure, where the last sentence (again, with the highest color
depth) is a conclusion or reason of the event described by its preceding sentences. Figure 1(c)
illustrates a specific-to-general-to-specific paragraph structure, where the most important
sentence (in the center of the snippet, with the highest color depth) is a connecting link between
the preceding and the following context. So it summarizes both its preceding and following
sentences.

ACM Transactions on Information Systems, Vol. 36, No. 4, Article 39. Publication date: April 2018.



39:4 P. Ren et al.

Fig. 1. Sentence contexts in different instances from the DUC 2004 dataset. The color depth represents the

importance of the sentence in terms of ROUGE-2 based on human written summaries. (Best viewed in color.)

TSR refers to the relation between a title sentence and a main body sentence. Usually, the title
sentence reflects the key idea of the whole document or at least contains the phrases or words that
are key to the document topic. As a result, the main body sentences that have close relations with
the title sentence are usually important and should be included in a summary.

QSR refers to the relation between a query sentence and a main body sentence. For query-
focused summarization, whether a sentence should be included in the final summary depends not

ACM Transactions on Information Systems, Vol. 36, No. 4, Article 39. Publication date: April 2018.
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only on its importance but also its relevance to the given query. The main body sentences that
have close relations with the document topic might not necessarily answer the given query. In
this case, they should be excluded from the final summary.

We propose a hybrid neural summarization model, namely sentence relation-based summariza-

tion (SRSum), to automatically learn sentence relation features from data. SRSum consists of five
sub-models:

— PriorSum: a sentence meaning sub-model that is encoded by a bi-gram convolutional neural
network (CNN);

—SFSum: a sentence surface sub-model that encodes the surface information, e.g., the sen-
tence length and the sentence position;

—CSRSum: a sentence relation sub-models corresponding to CSR;
—TSRSum: a sentence relation sub-models corresponding to TSR; and
—QSRSum: a sentence relation sub-models corresponding to QSR.

CSRSum evaluates the ability of a sentence to summarize its local context. It applies a two-level
attention mechanism (word level and sentence level) to attend differentially to more and less im-
portant content when constructing sentence/context representations, which simulates the context-
aware reading of human behavior, where words and sentences that have anaphoric relations or
local summarization abilities are easily remembered. Specifically, we first leverage sentence rela-
tions using a CNN with word-level attentive pooling to construct sentence representations. Then,
we leverage contextual relations using a RNN with sentence-level attentive pooling to construct
context representations. With its two-level attention mechanism, CSRSum can pay attention to
more important content (words and sentences) in the surrounding context of a given sentence.
Finally, CSRSum calculates the CSR relation scores as the sentence’s capacity to summarize its
contexts.

TSRSum evaluates the semantic closeness of each sentence with respect to its title, which re-
flects the main ideas of a document. TSRSum first uses a CNN to construct main body sentence
representations. Then it uses a TSR-based attention mechanism when constructing title repre-
sentations by assigning more weights to more relevant words, which simulates people’s reading
ability with the main idea (title) in mind. Compared with main body sentences, we usually adopt
different syntax rules to write titles to make them concise. Thus we assume that they belong to
two different spaces and use a bilinear matching mechanism to compute the TSR relation score
between the title representation and main body sentence representation.

QSRSum evaluates the relevance of each sentence with given queries for the query-focused sum-
marization. QSRSum first uses a CNN to construct main body sentence and query representations.
Then it uses a QSR-based attention mechanism to assign more weights to more relevant queries
with respect to the main body sentences, which simulates the attentive reading of a human reader
with some queries in mind. Since the main body sentences are written by the article authors while
the queries are given by the readers, we assume that they belong to two different spaces and use a
bilinear matching mechanism to compute the QSR relation score between the query representation
and main body sentence representation. Finally, SRSum automatically learns useful latent features
by jointly learning representations of query sentences, content sentences, and title sentences as
well as the their relations.

We conduct extensive experiments on the DUC 2001, 2002, 2004 multi-document summarization
datasets and the DUC 2005, 2006, 2007 query-focused multi-document summarization datasets. Our
experimental results demonstrate that SRSum achieves comparable or superior performance with
state-of-the-art approaches in terms of multiple ROUGE metrics.

ACM Transactions on Information Systems, Vol. 36, No. 4, Article 39. Publication date: April 2018.
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To sum up, the main contributions in this article are listed as follows:

• We propose a neural model, SRSum, which consists of five sub-models, PriorSum, CSRSum,
QSRSum, TSRSum, and SFSum to take a sentence’s meaning, three types of sentence rela-
tions, as well as surface information into consideration for extractive summarization.

• We fuse contextual relations with a two-level attention mechanism in CSRSum. With the
mechanism, CSRSum can learn to pay attention to important content (words and sen-
tences) in the surrounding sentences of a given sentence to simulate human context-aware
reading.

• We apply the attention mechanism in QSRSum to construct the query representation, which
simulates the human reading behavior with some queries in mind. With the mechanism,
QSRSum can model which part of the query is answered by the current sentence.

• We apply the attention mechanism in TSRSum to construct the title representation. With
the mechanism, TSRSum can better evaluate the TSR relation scores by focusing on more
relevant words in the title to the current sentence.

• We carry out extensive experiments and analyses on six benchmark datasets. The results
indicate that SRSum can significantly improve the performance of extractive summarization
by modeling the three sentence relations.

2 RELATED WORK

We group related work on extractive summarization in three categories, which we discuss below.

2.1 Unsupervised Techniques

In early studies on extractive summarization, Luhn (1958) proposes the use of frequency thresh-
olds to identify descriptive terms in a document to be summarized, a simple representation of the
document’s topic. The descriptive terms in his approach exclude the most frequent words in the
document, which are likely to be determiners, prepositions, or domain-specific terms, as well as
those occurring only a few times. Dunning (1993) proposes a statistical version of Luhn’s idea,
which applies the likelihood ratio test for the identification of composite terms and for the deter-
mination of domain-specific terms that are highly descriptive of the input. Later, Lin and Hovy
(2000) refer to such terms as “topic signatures” in the summarization literature.

In the early 2000s, unsupervised sentence scoring methods become popular (Lin and Hovy 2002;
Radev et al. 2000). Centroid-based and Maximum Marginal Relevance (MMR)-based approaches
are prominent examples. Centroid-based methods use sentence centrality to indicate importance
(Mihalcea 2004). Radev et al. (2000, 2004) model cluster centroids in their summarization system,
MEAD. LexRank (or TextRank) computes sentence importance based on eigenvector centrality in
a graph of sentence similarities (Erkan and Radev 2004; Mihalcea and Tarau 2004). Wan (2008,
2011), Wan and Xiao (2009), and Wan and Yang (2008) propose several centroid-based approaches
for summarization.

MMR-based methods consider a linear trade-off between relevance and redundancy (Carbonell
and Goldstein 1998). Goldstein et al. (2000) extend MMR to support extractive summarization by in-
corporating additional information about the document set and relations between the documents.
McDonald (2007) achieves good results by reformulating MMR as a knapsack packing problem
and solving it using ILP. Later, Lin and Bilmes (2010, 2011) propose a variant of the MMR frame-
work that maximizes an objective function that considers the linear trade-off between coverage
and redundancy terms.

Unlike our approach to summarization, these unsupervised methods do not need human-written
summaries to train a model; their performances are usually limited.

ACM Transactions on Information Systems, Vol. 36, No. 4, Article 39. Publication date: April 2018.
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2.2 Traditional Machine-Learning-Based Techniques

Machine-learning techniques have been used to obtain better estimations of sentence importance.
Kupiec et al. (1995) train a Naive Bayes classifier to decide whether to include a sentence in the
summary. Barzilay et al. (2002) propose a methodology for studying the properties of ordering
information in the news genre and describe experiments done on a corpus of multiple acceptable
orderings. They implement a strategy for ordering information that combines constraints from
chronological order of events and topical relatedness. Lapata (2003) propose an approach to in-
formation ordering that is particularly suited for text-to-text generation. They describe a model
that learns constraints on sentence order from a corpus of domain-specific texts and an algorithm
that yields the most likely order among several alternatives. Li et al. (2007) evaluate sentence im-
portance with support vector regression, after which a rule-based method is applied to remove
redundant phrases. Gillick and Favre (2009) evaluate bi-gram importance and use the scores to
evaluate sentence importance and redundancy with a linear combination. Bollegala et al. (2010)
present a bottom-up approach to arrange sentences extracted for multi-document summarization.
To capture the association and order of two textual segments (e.g., sentences), they define four cri-
teria: chronology, topical-closeness, precedence, and succession. These criteria are integrated into
a criterion by a supervised learning approach. Lin and Bilmes (2010) propose a structural SVM
learning approach to learn the weights of feature combinations using the MMR-like submodular-
ity function proposed by Lin and Bilmes (2010, 2011). Lin and Bilmes (2012) introduce a method
to learn a mixture of submodular “shells” in a large-margin setting. A submodular shell is an ab-
stract submodular function that can be instantiated with a ground set and a set of parameters to
produce a submodular function. A mixture of such shells can then also be instantiated to produce
a more complex submodular function. They provide a risk bound guarantee when learning in a
large-margin structured prediction setting using a projected subgradient method when only ap-
proximate submodular optimization is possible (such as with submodular function maximization).
Their method is also used for image collection summarization (Tschiatschek et al. 2014).

Yan and Wan (2015) propose the Deep Dependency Sub-Structure (DDSS) and topic-sensitive
Multi-Task Learning (MTL) model. Given a document set, they parse all sentences into deep de-
pendency structures with a Head-Driven Phrase Structure Grammar parser and mine the frequent
DDSSs after semantic normalization. They then employ MTL to learn the importance of these fre-
quent DDSSs. Hu and Wan (2015) propose a system (namely PPSGen) to automatically generate
presentation slides by selecting and aligning key phrases and sentences.

The methods listed above all rely on human-engineered features. Unlike our work with SRSum,
most of the features used with traditional machine-learning-based techniques are surface features
that do not take contextual relations into account.

2.3 DeepLearning-Based Techniques

Deep-learning techniques have attracted considerable attention in the summarization literature,
e.g., abstractive summarization (Bing et al. 2015; Chopra et al. 2016; Nallapati et al. 2016), sentence
summarization (Filippova et al. 2015; Hu et al. 2015; Rush et al. 2015), and extractive summarization
(Cao et al. 2015a, 2015b; Cheng and Lapata 2016). We focus on the use of deep-learning techniques
for extractive summarization.

Kågebäck et al. (2014) and Kobayashi et al. (2015) use the sum of trained word embeddings to
represent sentences or documents. They formalize the summarization task as the problem of max-
imizing a submodular function based on the similarities of the embeddings. Yin and Pei (2015) pro-
pose CNNLM, a model based on CNNs, to project sentences into dense distributed representations,
then model sentence redundancy by cosine similarity. Cao et al. (2015b) propose the concept of
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summary prior to define how much a sentence is appropriate to be selected into summary without
consideration of its context. They develop a summarization system called PriorSum, which applies
enhanced CNNs to capture the summary prior features derived from length-variable phrases. In
other work, the authors develop a ranking framework based on RNNs (R2N2) to rank sentences
for multi-document summarization. R2N2 formulates the ranking task as a hierarchical regres-
sion process that simultaneously measures the salience of a sentence and its constituents (e.g.,
phrases) in the parse tree (Cao et al. 2015a). Cheng and Lapata (2016) treat single document sum-
marization as a sequence labeling task and model it with recurrent neural networks. Their model
is composed of a hierarchical document encoder and an attention-based extractor; the encoder
derives the meaning representation of a document based on its sentences and their constituent
words while the extractor adopts a variant of neural attention to extract sentences or words. Cao
et al. (2016) propose a system called AttSum for query-focused multi-document summarization
that applies an attention mechanism to simulate the attentive reading of human behavior when a
query is given.

A growing number of publications on extractive summarization focus on deep-learning tech-
niques. To the best of our knowledge, we are the first to consider CSRs under sentence regression
framework for extractive summarization. Our own previous publication (Ren et al. 2017) is an ex-
ception: in that paper we improve the performance of generic multi-document summarization by
modeling the CSRs in the surrounding contexts of a given sentence. We build on that paper by ex-
panding it with two other sub-models, TSRSum and QSRSum, corresponding to the TSR relations
and QSR relations, respectively. With these two sub-models, the new model can simulate people’s
reading ability with the main idea (title) and reading intention (query) in mind.

3 METHOD

3.1 Overview

We follow the sentence regression-based approach to summarization. Thus, there are two phases in
our method to generate a summary: sentence scoring and sentence selection. In the sentence scoring
phase, we learn a scoring function f (St | θ ) for each sentence St to fit the ground truth ROUGE-2
score:1

f (St | θ ) ∼ ROUGE-2(St | Sref ), (1)

where θ are the parameters; ROUGE-2(St | Sref ) is the ground truth score of St in terms of ROUGE-
2 based on human written summaries Sref (Lin 2004). In Section 3.2, we detail how we model
f (St | θ ).

During the sentence selection phase, we select a subset of sentences as the summary Ψ subject
to a given length constraint l , i.e.,

Ψ∗ = arg max
Ψ⊆D

∑

St ∈Ψ

f (St | θ ) such that
∑

St ∈Ψ

|St | ≤ l and r (Ψ) holds, (2)

where D is the set of sentences from one or more documents that belong to the same topic; |St |
is the length of St in words or bytes; r (Ψ) is a constraint function to avoid redundancy in the
final summary. In this article, a sentence is considered non-redundant if it contains more new bi-
grams compared to the current summary content. Details of the sentence selection algorithm are
explained in Section 3.8.

1http://www.berouge.com/Pages/default.aspx.
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Fig. 2. Overview of SRSum.

3.2 Sentence Scoring

For sentence scoring, we propose a neural model, SRSum. The architecture of SRSum is shown
in Figure 2. SRSum contains five submodels, CSRSum, TSRSum, QSRSum, PriorSum, and SFSum.
CSRSum encodes the CSRs. TSRSum encodes the TSRs. QSRSum encodes the QSRs. PriorSum
encodes the prior features that represent the meaning of the sentence. SFSum enhances SRSum by
appending a small number of effective surface features. We concatenate these features and then
apply a Multilayer Perceptron (MLP) (Gardner and Dorling 1998; Ruck et al. 1990) as the decoder
to transform the features (the outputs of the five submodels) into a single value as the final salience
score to St , as shown in Equation (3):

f (St | θ ) = MLP

��������

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f CSR (St )
f TSR (St )
f QSR (St )
f Prior (St )
f SF (St )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�������
. (3)

Here, f CSR (St ), f TSR (St ), f QSR (St ), f Prior (St ), and f SF (St ) are the outputs of CSRSum, TSRSum,
QSRSum, PriorSum, and SFSum, respectively. θ are the parameters of the neural network. We use
a three-hidden-layer MLP with tanh activation function.

As with existing studies (Cao et al. 2015a, 2015b; Ren et al. 2016a), we use the standard mean
square error as the loss function to train SRSum:

L(θ ) =
1

|C | · |D |
∑

D∈C

∑

St ∈D

Err (St ),

Err (St ) =
(
f (St | θ ) − ROUGE-2(St | Sref )

)2
,

(4)

where C is the set of all documents.
In the next five subsections, we describe the five components (PriorSum, CSRSum, TSRSum,

QSRSum, and SFSum) in detail.
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Fig. 3. Architecture of PriorSum.

3.3 PriorSum

Since we conduct regression with respect to ROUGE-2, which is computed as the bi-gram overlap
between the system-generated summary and the human-written summary, we use Bi-CNN (Cao
et al. 2015b) to model each sentence, as shown in Figure 3. We first concatenate adjacent words
into bi-grams:

biPrior (i, i + 1) =

[
wi

wi+1

]
, (5)

where wi is the word embedding for the i-th word of a sentence. The index of wi starts from 0 and
ends with sentence length +1 because we add two padding words “<L>” (Left) and “<R>” (Right)
to each sentence. After that, we perform convolutions on the bi-grams with a filter matrix:

hPrior (i, i + 1) = f (WT
Prior · biPrior (i, i + 1) + bPrior ), (6)

where WPrior ∈ R2 |wi |× |wi | is the filter matrix; bPrior is the bias; and f (·) is the activation function.
We use the tanh(·) function in our experiments.

Then we perform element-wise max pooling over the bi-gram representations H Prior
bi

(St ) =

{hPrior (i, i + 1) | 0 ≤ i ≤ |St |} to obtain the representation h(St ) of sentence St :

h(St ) = max
hPrior (i,i+1)∈H Prior

bi
(St )

hPrior (i, i + 1). (7)

The function max chooses the maximum value of each dimension of the vectors in H Prior
bi

(St ).

The output of PriorSum, h(St ), is regarded as the prior features (f Prior (St ) = h(St )) of St that
represent its “meaning” or prior capability as a summary sentence (Cao et al. 2015b).

3.4 CSRSum

CSRSum is based on the intuition that important sentences are usually those that can summarize
their local contexts. Given a sentence St , we assume that its preceding context sentence sequence
is CCSR

pc = {St−m , . . . , St−c , . . . , St−1 | 1 ≤ c ≤ m} and that its following context sentence sequence

is CCSR
fc
= {St+1, . . . , St+c , . . . , St+n | 1 ≤ c ≤ n}. Settings of m and n are discussed in Section 4 be-

low. We write f CSR (St ) = [f CSR
pc (h(St ), hCSR

pc (St )), f CSR
fc

(h(St ), hCSR
fc

(St ))] for the output of CSRSum;

it represents the CSR features, as shown in Figure 4. The purpose of f CSR
pc (h(St ), hCSR

pc (St )) is to
estimate the ability of St to summarize its preceding context:

f CSR
pc (h(St ), hCSR

pc (St )) = cos(h(St ), hCSR
pc (St )). (8)
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Fig. 4. Architecture of CSRSum.

Similarly, f CSR
fc

(h(St ), hCSR
fc

(St )) estimates the ability of St to summarize its following context:

f CSR
fc (h(St ), hCSR

fc (St )) = cos(h(St ), hCSR
fc (St )), (9)

where h(St ) is the sentence model of St (the outputs of PriorSum); cos indicates the cosine simi-
larity. The reason that we employ cos here and also in some following equations is that cos does
not introduce additional parameters and is frequently used to model semantic similarities. Besides,
we found that changing cos to parametric similarities (i.e., linear layer with activation function)
does not improve the results. hCSR

pc (St ) and hCSR
fc

(St ) are the context models of CCSR
pc and CCSR

fc
as

described next.

CSR Attentive Context Modeling: hCSR
pc (St ) and hCSR

fc
(St ). We use Recurrent Neural Networks with

a Long Short-Term Memory (LSTM) unit to model the context, which have been successfully ap-
plied to many sequence modeling tasks (Filippova et al. 2015; Nallapati et al. 2016; Rush et al. 2015).
There are many variations of LSTMs that differ in their connectivity structure and activation func-
tions. We employ the LSTM architecture presented in Graves et al. (2013).

LSTM : hCSR
t−1 , v

CSR (St ), ct−1 → ct , h
CSR
t (10)

hCSR
t is the hidden state with respect to the t-th time step input vCSR (St ) (defined next in Equa-

tion (13)); ct is the memory cell vector of the t-th time step; and sigm and tanh are applied element-
wise. LSTMs have a complicated dynamics that allows them to easily “memorize” information for
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Fig. 5. Architecture of CSR-Bi-CNN.

an extended number of time steps. The “long term” memory is stored in a vector of memory cells
ct . An LSTM can decide to overwrite the memory cell, retrieve it, or keep it for the next time step.

Given a sentence St , we recurrently apply the LSTM unit to its preceding context sentence
sequence CCSR

pc and following context sentence sequence CCSR
fc

. For each timestamp t , St is fed

into the LSTM unit and a corresponding vector representation hCSR
t is generated. Then, we have

HCSR
pc = {hCSR

t−m , . . . , h
CSR
t−1 } for CCSR

pc and HCSR
fc
= {hCSR

t+1 , . . . , h
CSR
t+n } for CCSR

fc
. Finally, we encode HCSR

pc

and HCSR
fc

into vector representations with an LSTM (CSR-LSTM) that can attend differentially to

more and less important sentences, as shown in Figure 4. The formula for St ’s preceding context
is

hCSR
pc (St ) =

m∑

i=1

αCSR
t−i · hCSR

t−i , (11)

where αCSR
t−i is the attention weight for the hidden context state hCSR

t−i . The formula for St ’s following
context is similar.

Unlike most existing attention mechanisms, where the last hidden state of an LSTM is used to
learn the attention weights (Chopra et al. 2016; Rush et al. 2015), here CSR-LSTM applies CSR
relations to model attention weights:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αCSR
t−m
...

αCSR
t−i
...

αCSR
t−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= softmax

�����������

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(hCSR
t−m , h(St ))
...

cos(hCSR
t−i , h(St ))
...

cos(hCSR
t−1 , h(St ))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

����������
. (12)

CSR Attentive Sentence Modeling: vCSR (St−c ). To selectively encode the more important bi-grams
in the surrounding contexts of a sentence into the representation of the sentence, a CSR attentive
Convolutional Neural Network (CSR-Bi-CNN) is applied, as shown in Figure 5. The difference with
Bi-CNN is that we jointly learn a bi-gram weight αCSR (i, i + 1) when conducting pooling:

vCSR (St−c ) =
|St−c |∑

i=0

αCSR (i, i + 1) · hCSR (i, i + 1). (13)
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Fig. 6. Architecture of TSRSum.

Here, St is the sentence to conduct regression on; St−c is St ’s context sentence; and αCSR (i, i + 1)
is the attention signal for the bi-gram vector hCSR (i, i + 1).

Unlike existing attentive pooling techniques (dos Santos et al. 2016; Yin et al. 2016), we use CSR
relations to learn the pooling weights in Equation (14):⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αCSR (0, 1)
...

αCSR (i, i + 1)
...

αCSR ( |St−c |, |St−c + 1|)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= softmax

�����������

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(hCSR (0, 1), h(St ))
...

cos(hCSR (i, i + 1), h(St ))
...

cos(hCSR ( |St−c |, |St−c + 1|), h(St ))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

����������
. (14)

We use the softmax function to normalize the weights.

3.5 TSRSum

Titles usually reflect the key idea of the full document or at least they contain the phrases or
words that are key to the document topics. As a result, if a sentence St is closely related to the
title sentence, then we have enough confidence that St is important and should be included in the
summary. TSRSum is meant to model this, as shown in Figure 6. Unlike CSRSum, where cosine
similarity is applied to compute the matching of two main body sentences, here we use a bilinear
scheme to calculate the matching of the title sentences and main body sentences in Equation (15),
because we assume that article authors usually adopt different syntax styles to write titles to make
them concise:

f TSR (St ) = hTSR (TS )T Wbil inear
TSR h(St ), (15)

where Wbil inear
TSR

∈ R |hTSR (TS ) |× |h(St ) | is the bilinear matching matrix; h(St ) is the sentence model of

St (the output of PriorSum); and hTSR (TS ) is the sentence model of the title sentence TS .

TSR Attentive Sentence Modeling: hTSR (TS ). To get hTSR (TS ), TSR attentive Convolutional Neural
Network (TSR-Bi-CNN) is applied, as shown in Figure 6. First, we adopt a similar Bi-CNN as
described in Section 3.3 to get each bi-gram representation hTSR (i, i + 1). Then, the title sentence
representation hTSR (TS ) is obtained by leveraging TSR-based attentive pooling in Equation (16);
note that the Bi-CNN part of TSRSum shares the same parameters as PriorSum because the
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Fig. 7. Architecture of QSRSum.

number of title sentences is much smaller than the number of main body sentences and is not
enough to train a good model:

hT SR (TS ) =
|TS |∑

i=0

αTSR (i, i + 1) · hTSR (i, i + 1), (16)

where αTSR (i, i + 1) is the attention weight defined as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αTSR (0, 1)
...

αTSR (i, i + 1)
...

αTSR ( |St−c |, |St−c + 1|)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= softmax

�����������

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(hTSR (0, 1), h(St ))
...

cos(hTSR (i, i + 1), h(St ))
...

cos(hTSR ( |St−c |, |St−c + 1|), h(St ))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

����������
. (17)

The TSR-based attention used here is meant to identify those bi-grams in the title sentences that
are closely related to St .

3.6 QSRSum

For query-focused summarization, whether a sentence should be included in the final summary
depends not only on its importance but also on its relevance to a given query. The main body
sentences that are closely related to the document topic might not necessarily answer the given
query. On the contrary, a sentence that does not reflect the core idea of the article might prop-
erly answer the given query. QSRSum is proposed to model this, as shown in Figure 7. The main
body sentences are written by the article authors while the queries are given by the readers. We
assume that they belong to different spaces and use a bilinear matching mechanism to compute
the QSR relation score between the query representation and main body sentence representation
in Equation (18):

f QSR (St ) = hQSR (QS )T Wbil inear
QSR h(St ), (18)
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Table 2. Basic Surface Features Used in This Article

Feature Description

flen (St ) = 1
len (St ) len(St ) means the length of St

fpos (St ) = 1
pos (St ) pos (St ) means the position of St in its document

ftf (St ) =
∑

w∈St
TF (w )

flen (St ) Average term frequency. TF (w )

is the term frequency of word w

fdf (St ) =
∑

w∈St
DF (w )

flen (St ) Average document frequency. DF (w )

is the document frequency of word w

where Wbil inear
QSR

∈ R |hQSR (QS ) |× |h(St ) | is the bilinear matching matrix; h(St ) is the sentence model

of St (the outputs of PriorSum); hQSR (QS ) is the query sentence model of the queries QS =

{Q1
S ,Q

2
S , . . . ,Q

|QS |
S
}.

hQSR (QS ) is computed in Equation (19):

hQSR (QS ) =

|QS |∑

i=1

α
QSR
i · hQSR (Q i

S ), (19)

where hQSR (Q i
S

) is gotten with the Bi-CNN in Figure 3; α
QSR
i is the attention signal where we use

QSR-based attention to highlight more relevant queries in Equation (20).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
QSR
1
...

α
QSR
i
...

α
QSR

|QS |

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= softmax

�����������

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(hQSR (Q1
S ), h(St ))
...

cos(hQSR (Q i
S

), h(St ))
...

cos(hQSR (Q
|QS |
S

), h(St ))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

����������
. (20)

QSR-based attention uses the main body sentence to attend to the query sentences as opposed to
attentive readers which use the query sentence to attend to sentence words (Cao et al. 2016). In
other words, QSR-based attention tries to predict which query sentence is answered by the main
body sentence while attentive readers try to predict which words (or parts) in the given sentence
mostly answer the query.

3.7 SFSum

Even though PriorSum, CSRSum, TSRSum, and QSRSum are effective in modeling sentence mean-
ings and relations, they cannot encode some important surface information, e.g., sentence length,
sentence position and so on. These surface features are commonly used in feature engineering
approaches and are indispensable for extractive summarization. To this end, we adopt four ba-
sic surface features listed in Table 2: flen (St ) is the sentence length of St , fpos (St ) is the sentence
position of St ; ftf (St ) is the average term frequency of the terms in St , and fdf (St ) is the aver-
age document frequency of the terms in St . These features are concatenated together with CSR
features, TSR features, QSR features, and prior features to decode the sentence importance score.
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Table 3. Statistics of the DUC Datasets

Clusters Sentences Length limit Avg. queries per cluster Avg. query length
2001 30 11,295 100 words – –
2002 59 15,878 100 words – –
2004 50 13,070 665 bytes – –
2005 50 45,931 250 words 2.18 13.55
2006 59 34,560 250 words 2.10 12.53
2007 30 24,282 250 words 1.62 15.11

3.8 Sentence Selection

There are two branches of commonly used algorithms for sentence selection, namely Greedy and
Integer Linear Programming (ILP). Greedy is a little less promising than ILP because it greedily
maximizes a function, which ILP exactly maximizes. However, it offers a nice trade-off between
performance and computational cost. Besides, since the objective (Equation (2)) is submodular,
maximizing it with Greedy has a mathematical guarantee on optimality (Lin and Bilmes 2010,
2011; Nemhauser et al. 1978). Thus, we use Greedy as the sentence selection algorithm. The algo-
rithm starts with the sentence of the highest score. In each step, a new sentence St is added to the
summary Ψ if it satisfies the following two conditions:

It has the highest score among the remaining sentences; and (21)

bi-gram-overlap(St ,Ψ)

flen (St )
≤ 1 − λ,where bi-gram-overlap(St ,Ψ) is the count of bi-gram (22)

overlap between sentence St and the current summary Ψ.

The algorithm terminates when the length constraint is reached. We skip the sentence if it does
not satisfy the bi-gram overlap. Settings of λ are discussed in Section 7.4 below.

4 EXPERIMENTAL SETUP

The two main research questions we aim to answer are: Does modeling CSRs, TSRs and QSRs im-
prove the performance of extractive summarization? And does it help to improve the performance
of query-focused extractive summarization?

We list the datasets used in Section 4.1, implementation details of our model, SRSum, in Sec-
tion 4.2, baselines in Section 4.3, and metrics in Section 4.4.

4.1 Datasets and Evaluation Metrics

For evaluation we use well-known corpora made available by the Document Understanding Con-
ference (DUC).2 The documents are all from the news domain and are grouped into various the-
matic clusters. Table 3 shows the size of the six datasets and the maximum length limit of sum-
maries for each task. Each cluster contains 2 to 4 summaries written by professional experts. The
DUC 2001, 2002, and 2004 datasets are for multi-document summarization. The DUC 2005, 2006,
and 2007 datasets are for query-focused multi-document summarization. Most clusters contain
more than one query sentence. The average number of query sentences per cluster of DUC 2007
are less, because there are more than one queries in one sentence. For example, “What is the scope
of operations of Amnesty International and what are the international reactions to its activities?”
For each document cluster, we concatenate all articles and split them into sentences using the tool

2http://duc.nist.gov/.
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provided with the DUC 2003 dataset. We follow standard practice and train our models on two
years of data and test on the third (Cao et al. 2015a).

No titles are available for the DUC 2001, 2002, and 2004 datasets. As a primary approximation
titles, we use the first sentence as the title. This allows us to use TSR also for these datasets.

4.2 Implementation Details

During training, we first give a score to each sentence as ground truth based on human-written
summaries using the official ROUGE evaluation tool. Then we train our model through conducting
regression to the scores. This is the standard and commonly used training procedure for sentence
regression methods (Cao et al. 2015a; Li et al. 2007). Stanford CoreNLP3 is used to tokenize
the sentences. The 50 dimensional GloVe4 vectors are used to initialize the word embeddings.
The hidden sizes of CNN and LSTM are the same with the word embeddings. The hidden sizes
of the MLP layers are 100, 50, and 1. Increasing the number and dimension size of layers has
little influence in the performance according to our experiments. We replace a word that is not
contained in the GloVe vocabulary as “<U>” (Unknown). The word embeddings are fine-tuned
during training. We also tried the 100, 200, and 300 dimensional word embeddings and found that
they do not improve the results. Before feeding the word embeddings into the neural models,
we perform the dropout operation that sets a random subset of its argument to zero with drop
ratio p = 0.5. The dropout layer acts as a regularization method to reduce overfitting during
training (Srivastava et al. 2014). To learn the weights of our model, we apply the diagonal variant
of AdaGrad (Duchi et al. 2011) with mini-batches, whose size we set to 20. For the parameters
m and n that represent the number of context sentences, we use values ranging from 1 to 10 on
the DUC 2001 dataset. Generally, larger values will result in better performance, but the training
speed slows down greatly whenm, n > 4. As a trade-off, we setm, n = 4 in our experiments when
compared with other methods. The best settings of the parameter λ are decided by presenting
the ROUGE-2 performance with λ ranging from 0 to 0.9 with a step size of 0.05. The toolkit to
reproduce the experimental results of SRSum is available on Github.5

4.3 Baselines and Approaches Used for Comparison

We first consider the generic multi-document summarization task. We list the methods compared
against SRSum in Table 4. LexRank, ClusterHITS, ClusterCMRW are centroid-based methods; of
these, ClusterHITS achieves the best ROUGE-1 score on DUC 2001. Lin is an MMR-based method.
REGSUM, Ur, Sr, U+Sr, and SF are feature engineering-based methods with different features. R2N2
uses an RNN to encode each sentence into a vector based on its parse tree; then it performs sentence
regression combined with 23 features. GA and ILP are greedy and ILP-based sentence selection
algorithms, respectively. PriorSum uses a CNN to encode each sentence into a feature vector and
then performs sentence regression combined with surface features.

We list the methods against which SRSum is compared for the query-focused multi-document
summarization task in Table 5. LEAD simply selects the leading sentences to form a summary;
it is often used as an official baseline of this task (Cao et al. 2016). QUERY_SIM ranks sentences
according to their TF-IDF cosine similarity to the query. MultiMR is a graph-based manifold rank-
ing method. SVR is a feature engineering-based method. ISOLATION contains two parts: sentence
saliency is modeled as the cosine similarity between a sentence embedding and the document em-
bedding and query relevance is modeled as the TF-IDF cosine similarity between a sentence and the

3http://stanfordnlp.github.io/CoreNLP/.
4http://nlp.stanford.edu/projects/glove/.
5https://github.com/PengjieRen/LibSum.
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Table 4. Methods Considered for Comparison on the Multi-Document

Summarization Task in Section 6.1

Acronym Gloss Reference

SRSum PriorSum + CSRSum + TSRSum + SFSum. Section 3
Unsupervised methods

LexRank Centroid-based method Erkan and Radev (2004)
ClusterHITS Centroid-based method Wan and Yang (2008)
ClusterCMRW Centroid-based method Wan and Yang (2008)
Lin Maximal marginal relevance method Lin and Bilmes (2011)
Feature engineering-based methods

REGSUM Regression word saliency estimation Cao et al. (2015a)
Ur REGSUM with different features Cao et al. (2015a)
Sr SVR with 23 defined features Cao et al. (2015a)
U+Sr Combination of Ur and Sr Cao et al. (2015a)
Deep-learning-based methods

R2N2_GA RNN with greedy sentence regression Cao et al. (2015a)
R2N2_ILP RNN with ILP sentence regression Cao et al. (2015a)
PriorSum REGSUM with different features Cao et al. (2015b)

Table 5. Methods Considered for Comparison on the Query-Focused Multi-Document

Summarization Task in Section 6.2

Acronym Gloss Reference

SRSum The proposed model in this article Section 3
Unsupervised methods

LEAD Select the leading sentences Wasson (1998)
QUERY_SIM TF-IDF cosine similarity Cao et al. (2016)
MultiMR Graph-based manifold ranking method Wan and Xiao (2009)
Feature engineering-based methods

SVR SVR with hand-crafted features Ouyang et al. (2011)
Deep-learning-based methods

ISOLATION Embedding and TF-IDF cosine similarity Cao et al. (2016)
DocEmb Embedding distributions-based summarization Kobayashi et al. (2015)
AttSum Neural attention summarization Cao et al. (2016)
VAEs-A Variational Auto-Encoders-based summarization Li et al. (2017)

query. DocEmb summarizes by asymptotically estimating the KL-divergence based on document
embedding distributions. AttSum learns distributed representations for sentences and the docu-
ments; it applies an attention mechanism to simulate human reading behavior. VAEs-A contains
two components: latent semantic modeling and salience estimation. For latent semantic modeling,
a neural generative model called Variational Auto-Encoders is employed to describe the observed
sentences and the corresponding latent semantic representations. For salience estimation, VAEs-A
considers the reconstruction for latent semantic space and observed term vector space. Finally, ILP
is used to select the sentences based on the salience estimation.
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Fig. 8. Visualization of sentence scoring. The depth of the color corresponds to the importance of the sen-

tence given by groundtruth or models. The boxed characters Si indicate sentence start. (Best viewed in color.)

4.4 Metrics and Significance Testing

The ROUGE metrics are the official metrics of the DUC extractive summarization tasks (Rankel
et al. 2013). We use the official ROUGE tool6 (Lin 2004) to evaluate the performance of the base-
lines as well as our approaches. The length constraint is “-l 100” for DUC 2001/2002, “-b 665” for
DUC 2004, and “-l 250” for DUC 2005/2006/2007. We take ROUGE-2 recall as the main metric for
comparison because Owczarzak et al. (2012) show its effectiveness for evaluating automatic sum-
marization systems. We impose constraints on the length of generated summaries according to
the official summary length limits.

For significance testing, we use a two-tailed paired Student’s t-test with p < 0.05.

5 CASE STUDIES

Before reporting on the outcomes aimed at answering our research questions, we present two
examples to illustrate our methods at work. From top-left to bottom-right, Figure 8 shows the
ground truth, SFSum, SRSum-SFSum (that is, SRSUm minus the SFSum component), and SRSum,

6ROUGE-1.5.5 with options: -n 2 -m -u -c 95 -x -r 1000 -f A -p 0.5 -t 0.
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respectively. The depth of the color corresponds to the importance of the sentence given by
ground truth or models. We can see that SFSum cannot properly distinguish the different levels
of importance of different sentences. It wrongly estimates which of the two is more important,
the third sentence or the fourth. SRSum-SFSum is better than SFSum, however its ability to
distinguish different degrees of importance (compared to the ground truth) is still limited, due
to a lack of important surface factors encoded by SFSum. Finally, SRSum can better approach
the ground truth, which means that combining sentence relation features with surface features
improves the performance of sentence regression.

As a second example, we visualize the learned the attention signals of the CSR, TSR, and QSR
relations, as shown in Figure 9. Figure 9(a) illustrates the CSR word-level attentive pooling. We can
see that St helps to pick up the more important words of in the surrounding context sentence St+1

when modeling St+1 into a vector representation. Figure 9(b) illustrates the CSR sentence-level
attentive pooling. As shown, the context sentences St+1 to St+5 are treated differently according to
their relevance to St . The more relevant sentences have more effect on the final results. Figure 9(c)
illustrates the TSR attentive pooling. The two different main body sentences St highlight different
parts of the title sentenceTS . Figure 9(d) illustrates the QSR attentive pooling. The three main body
sentences St answer different sub-queries of the given query QS . As shown, the learned signals
correctly pay attention to the corresponding sub-queries.

6 RESULTS

In Section 6.1, we compare SRSum with several state-of-the-art methods on the DUC 2001, 2002,
and 2004 multi-document summarization datasets. We further evaluate the effectiveness of SRSum
on the DUC 2005, 2006, and 2007 query-focused multi-document summarization datasets in Sec-
tion 6.2. Here, we show that modeling CSR, TSR, and QSR relations is also useful for query-focused
summarization. We follow with further analyses of the results in Section 7.

6.1 Generic Multi-Document Summarization

The ROUGE scores of the methods listed in Table 4 on the DUC 2001, 2002, and 2004 datasets are
presented in Table 6. For each metric, the best performance per dataset is indicated in bold face.
Generally, SRSum achieves the best performance in terms of both ROUGE-1 and ROUGE-2 on all
three datasets. Although ClusterHITS achieves higher ROUGE-1 scores on DUC 2001, its ROUGE-2
scores are much lower. In contrast, SRSum works quite stably across datasets. ClusterCMRW gets
higher ROUGE-1 scores on DUC 2002 and its ROUGE-2 score is comparable with R2N2_GA, but
SRSum improves over ClusterCMRW by over 1.6 percentage points (%pts) in terms of ROUGE-2.

SRSum is much effective than deep learning models, R2N2_GA, R2N2_ILP, and PriorSum.
Specifically, SRSum improves over PriorSum, the best method, in terms of ROUGE-2 by 1%pt on
DUC 2001, 2002, and over 0.5%pt on DUC 2004. The improvements in terms of ROUGE-2 achieved
on the three benchmark datasets are considered big (McDonald 2007; Rankel et al. 2013). Note
that SRSum only uses four basic surface features while R2N2_GA, R2N2_ILP, and PriorSum are
combinations of neural models and dozens of hand-crafted features. The neural parts of R2N2_GA,
R2N2_ILP, and PriorSum model the stand-alone sentence, while SRSum further considers the CSR
and TSR relations.

The main insight is that SRSum captures complementary factors by considering CSR and TSR re-
lations that existing neural models or hand-crafted features do not capture, which we will analyze
in detail in Section 7.

6.2 Query-Focused Multi-Document Summarization

Next, we consider the performance of SRSum on the query-focused multi-document summariza-
tion task.
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Fig. 9. Visualization of CSR, TSR, and QSR attention mechanisms. (Best viewed in color.)

The results on the query-focused multi-document summarization task on the DUC 2005, 2006,
and 2007 datasets are presented in Table 7. Generally, SRSum achieves the best performance on all
three datasets. SRSum is more effective than traditional methods like LEAD, QUERY_SIM, Mul-
tiMR, and SVR, which shows the great potential of deep learning techniques for this task. SRSum
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Table 6. Multi-document Summarization

Approach ROUGE-1 ROUGE-2

Peer T 33.03 7.86
ClusterHITS∗ 37.42 6.81
LexRank 33.43 6.09
Ur∗ 34.28 6.66
Sr∗ 34.06 6.65

DUC 2001 U+Sr∗ 33.98 6.54
R2N2_GA∗ 35.88 7.64
R2N2_ILP∗ 36.91 7.87
PriorSum∗ 35.98 7.89
SFSum+PriorSum 35.79 7.97

SRSum 36.04† 8.44†

Peer 26 35.15 7.64
ClusterCMRW∗ 38.55 8.65
LexRank 35.29 7.54
Ur∗ 34.16 7.66
Sr∗ 34.23 7.81

DUC 2002 U+Sr∗ 35.13 8.02
R2N2_GA∗ 36.84 8.52
R2N2_ILP∗ 37.96 8.88
PriorSum∗ 36.63 8.97
SFSum+PriorSum 37.47 9.01

SRSum 38.93† 10.29†

Peer 65 37.88 9.18
REGSUM∗ 38.57 9.75
LexRank 37.87 8.88
Lin∗ 39.35 –
Ur∗ 37.22 9.15
Sr∗ 36.72 9.10

DUC 2004 U+Sr∗ 37.62 9.31
R2N2_GA∗ 38.16 9.52
R2N2_ILP∗ 38.78 9.86
PriorSum∗ 38.91 10.07
SFSum+PriorSum 38.13 9.97

SRSum 39.29† 10.70†

(ROUGE results (%) on DUC 2001, 2002, 2004 datasets. Per dataset, sig-

nificant improvements over the underlined methods are marked with †

(t-test, p < .05). Peer T, 26, 65 are the best performing participants at

DUC 2001, 2002, 2004, respectively. Scores of the methods marked with ∗

are taken from the corresponding references listed in Table 4. Note that

PriorSum∗ listed in this table is the one proposed in Cao et al. (2015b).

Different from ours, they combine unigram, bigram, and trigram CNN as

well as three surface features. Also note that a part of SRSum’s improve-

ment also comes from tuning SFSum+PriorSum, so we also list the results

of SFSum+PriorSum for comparison.)
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Table 7. Query-Focused Multi-Document Summarization

System ROUGE-1 ROUGE-2

DUC 2005

Peer 15 37.52 7.25

LEAD∗ 29.71 4.69

QUERY_SIM∗ 32.95 5.91

SVR 36.91 7.04

MultiMR∗ 35.58 6.81

DocEmb∗ 30.59 4.69

ISOLATION∗ 35.72 6.79

AttSum∗ 37.01 6.99

SFSum+PriorSum 37.86 7.39

SRSum 39.83† 8.57†

DUC 2006

Peer 24 41.11 9.56

LEAD∗ 32.61 5.71

QUERY_SIM∗ 35.52 7.10

SVR 39.24 8.87

MultiMR∗ 38.57 7.75

DocEmb∗ 32.77 5.61

ISOLATION∗ 40.58 8.96

AttSum∗ 40.90 9.40

VAEs-A∗ 39.60 8.90

SFSum+PriorSum 40.30 9.13

SRSum 42.82† 10.46†

DUC 2007

Peer 15 44.51 12.45

LEAD∗ 36.14 8.12

QUERY_SIM∗ 36.32 7.94

SVR 43.42 11.10

MultiMR∗ 41.59 9.34

DocEmb∗ 33.88 6.46

ISOLATION∗ 42.76 10.79

AttSum∗ 43.92 11.55

VAEs-A∗ 42.10 11.00

SFSum+PriorSum 42.98 11.29

SRSum 45.01† 12.80†

(ROUGE Results (%) on DUC 2005, 2006, 2007 datasets. Per dataset, signifi-

cant improvements over the underlined methods are marked with † (t-test,

p < .05). Peer 15, 24, 15 are the best performing participants at DUC 2005,

2006, 2007, respectively. Scores of the methods marked with ∗ are taken

from the corresponding references listed in Table 5. Note that a part of SR-

Sum’s improvement also comes from tuning SFSum+PriorSum, so we also

list the results of SFSum+PriorSum for comparison.)
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outperforms embedding-based methods like ISOLATION and DocEmb, because ISOLATION and
DocEmb do not have carefully designed network architectures. Instead, they simply benefit from
the distributed representations of words that have a limited capability. Though AttSum and VAEs-
A have carefully designed network architectures, it merely considers a stand-alone sentence and
its relevance to the given query and neglects the CSR and TSR relations. Besides the factors consid-
ered in AttSum, SRSum further considers the CSR and TSR relations, which leads to the observed
improvements over AttSum.

7 ANALYSIS

Having answered our main research questions in the previous section, we now analyze our experi-
mental results and the impact of our modeling choices. In Section 7.1, we analyze the effectiveness
of the five components of our model; in Section 7.2, we analyze the effectiveness of SRSum com-
pared to each of the surface features in SFSum; in Section 7.3, we replace our neural model with
a feature engineering method to analyze the effectiveness of our neural model; in Section 7.4, we
explore different settings of the threshold parameter λ in the greedy algorithm (sentence selec-
tion phase, Section 3.8) to determine the sensitivity of our method; and we analyze our attention
mechanisms.

7.1 Effectiveness of Different Components

We analyze the effectiveness of the five components, SFSum, PriorSum, CSRSum, TSRSum, and
QSRSum of our model on the six DUC datasets by removing each component in turn. The results
are listed in Table 8. Generally, removing any component will decrease the ROUGE scores. SF-
Sum is the most effective component as it contains essential surface features (i.e., the sentence
length, the sentence position, and the word frequency), which are commonly recognized as indis-
pensable in the news summarization literature (Cao et al. 2015a; Li et al. 2007). These features are
not considered by the other components. Each of the other components is relatively less effective
because their effects overlap. They all encode the sentence importance from the semantic perspec-
tive. PriorSum is also very important as it encodes the meaning of sentences, which proves to be
an essential factor for summarization. What we want to emphasize from the results in Table 8 is
that CSRSum, TSRSum, and QSRSum are also very useful, which means that the CSR, TSR, and
QSR relations indeed exist and are helpful factors for both summarization tasks.

We also found that the decreases of removing the five components vary with different datasets.
CSRSum is more effective on the DUC 2002, 2004, and 2007 datasets, while TSRSum is more effec-
tive on the DUC 2005, 2006, and 2007 datasets. The reason that TSRSum is less effective or simply
not useful on the DUC 2001 and 2004 datasets is because no titles are available on these datasets.
Instead, we regard the first sentence as the title, which is mostly reasonable but still has many ex-
ceptions. QSRSum is essential on the DUC 2005, 2006, and 2007 datasets as it is the only component
that considers the query relevance, which is indispensable on the query-focused summarization
task.

7.2 SRSum vs. the Surface Features

Pearson correlation coefficients can reflect the effectiveness of the feature to some extent. We
examine correlations with the ground truth of the surface features in Table 2 and of SRSum, as
shown in Table 9. SRSum achieves higher correlation scores with the ground truth than the surface
features (flen (St ), fpos (St ), ftf (St ), and fdf (St )). The results also show that flen (St ) and fpos (St ) are
important features for extractive summarization, confirming lessons reported in the literature (Cao
et al. 2015a, 2015b; Wan and Zhang 2014).
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Table 8. Effectiveness of Different Components

SRSum without the sub-model The sub-model alone

ROUGE-1 decrease ROUGE-2 decrease ROUGE-1 ROUGE-2

DUC2001

SFSum 1.01 0.79 34.82 7.76

PriorSum 0.97 0.85 31.68 5.21

CSRSum 0.65 0.76 32.47 7.45

TSRSum 0.5 −0.31 31.34 5.04

DUC2002

SFSum 2.43 1.52 37.33 8.98

PriorSum 1.01 0.70 33.27 6.61

CSRSum 0.71 0.59 36.87 9.01

TSRSum 0.11 0.26 31.31 5.65

DUC2004

SFSum 1.28 0.92 37.74 9.60

PriorSum 0.91 0.77 35.02 7.37

CSRSum 1.02 0.65 37.03 8.97

TSRSum −0.24 0.10 34.96 7.53

DUC2005

SFSum 2.07 1.23 37.07 6.81

PriorSum 0.44 0.72 35.05 5.58

CSRSum 0.6 0.41 35.80 6.09

TSRSum 0.82 0.57 35.21 5.62

QSRSum 1.05 0.78 36.76 6.11

DUC2006

SFSum 2.82 1.43 39.47 8.60

PriorSum 0.76 0.53 36.86 7.16

CSRSum 1.08 0.56 38.97 8.15

TSRSum 0.87 0.42 37.51 7.33

QSRSum 1.43 0.69 39.48 8.24

DUC2007

SFSum 2.53 1.76 42.28 11.15

PriorSum 0.87 0.69 40.37 8.69

CSRSum 0.87 0.51 40.59 10.93

TSRSum 0.58 0.39 40.81 9.38

QSRSum 1.41 0.80 41.33 9.54

(All models in this table are retrained in the same procedure as we train SRSum. For example, if we remove a

component from SRSum, then the left model is considered as a new model and retrained. Though CSRSum, TSRSum,

and QSRSum are all useful, we would like to emphasize that SFSum and PriorSum are more essential parts than

them.)

Pearson correlation coefficients only reflect linear correlations. Hence, we further visualize the
relation between the feature space of SRSum and the surface features flen (St ), fpos (St ), ftf (St ), and
fdf (St ), as shown in Figure 10, by plotting SRSum scores against the feature values.7 The color
depth reflects the importance of a sentence according to the ground truth. Low SRSum scores

7The scores for SRSum range from −1 to 1 as its activation function is tanh.
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Table 9. Pearson Correlation Coefficients of Surface

Features and SRSum

Dataset (DUC) 2001 2002 2004 2005 2006 2007
flen (St ) 0.31 0.31 0.37 0.35 0.25 0.33
fpos (St ) 0.28 0.31 0.40 0.23 0.20 0.37
ftf (St ) 0.14 0.20 0.24 0.19 0.32 0.39
fdf (St ) 0.19 0.23 0.38 0.25 0.37 0.24
SRSum 0.48 0.46 0.54 0.41 0.45 0.49

Fig. 10. SRSum scores vs. surface feature scores. Each point represents a sentence. The color depth reflects

the importance of the sentence according to the ground truth. (Best viewed in color.)

mostly correspond to sentences with low ROUGE-2 scores, which means that SRSum is able to
effectively identify useless sentences. Also, high SRSum scores mostly correspond to sentences
with high ROUGE-2 scores, which means that SRSum can distinguish the most important sentences
effectively. Obviously, this ability to identify the most important sentences is extremely useful, as a
summary is usually short, containing just a few very important sentences; we should also note that
this ability still leaves room for improvement as there are low-scoring and high-scoring sentences
mixed together.
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Table 10. CSR, TSR, and QSR Implementations with Hand-Crafted Features

Feature Description

fc1 (St ,CS ) = cos(TF (St ), TF (CS )) Cosine of TF vectors of St and its contexts CS

fc2 (St ,CS ) = cos(emb(St ), emb(CS )) Cosine of average embedding vectors of St and CS

ft1 (St ,TS ) = cos(TF (St ), TF (TS )) Cosine of TF vectors of sentence St and title TS

ft2 (St ,TS ) = cos(emb(St ), emb(TS )) Cosine of average embedding vectors of St and TS

fq1 (St ,QS ) = cos(TF (St ), TF (QS )) Cosine of TF vectors of sentence St and query QS

fq2 (St ,QS ) = cos(emb(St ), emb(QS )) Cosine of average embedding vectors of St and QS

Table 11. Deep Learning vs. Feature Engineering

Approach ROUGE-1 ROUGE-2

DUC 2001

SFSum 34.82 7.76

fc1,c2,t1,t2+SFSum 35.44 8.10

SRSum 36.04 8.44

DUC 2002

SFSum 37.33 8.98

fc1,c2,t1,t2+SFSum 37.01 9.19

SRSum 39.29 10.70

DUC 2004

SFSum 37.74 9.60

fc1,c2,t1,t2+SFSum 37.97 9.78

SRSum 39.03 10.57

DUC 2005
fc1,c2,t1,t2,q1,q2+SFSum 39.75 8.21

SRSum 39.83 8.57

DUC 2006
fc1,c2,t1,t2,q1,q2+SFSum 41.45 9.57

SRSum 42.82 10.46

DUC 2007
fc1,c2,t1,t2,q1,q2+SFSum 44.29 11.73

SRSum 45.01 12.80

7.3 Choice of Learning Framework

In principle, the core modeling idea underlying SRSum, namely CSRSum, to exploit contextual
relations, TSRSum to exploit title relations, and QSRSum to exploit query relations, can be imple-
mented differently, with hand-crafted features that capture these relations. To verify the effective-
ness of our deep learning implementation, we compare SRSum with some hand-crafted features.
Each of the three relations is encoded with two features; see Table 10. These features should be the
first features that come to mind if we implement CSR, TSR, and QSR using a feature engineering
approach.

From Table 11 we see that although these hand-crafted features all improve SFSum, they are
much less effective than SRSum. The reasons are at least threefold. First, SRSum models sen-
tences with relation-based attentive pooling Bi-CNN, which takes advantage of Bi-CNN and
uses relation enhanced attentive pooling to learn to attend to more important words, while
fc1 (St ,CS ), ft1 (St ,TS ), and fq1 (St ,QS ) use a sparse TF representation and fc2 (St ,CS ), ft2 (St ,TS ),
and fq2 (St ,QS ) use a simple average word embedding representation to model sentences. Second,
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Fig. 11. Sensitivity to the parameter λ of SRSum during sentence selection.

SRSum leverages LSTMs to encode context sentences and relation-enhanced attentive pooling to
learn to attend to the more important sentences, which gives SRSum the ability to selectively re-
member useful factors from the sequence of context sentences, while these hand-crafted features
simply average sentence representations. Third, the word embeddings of SRSum are fine-tuned
during training, which makes them better suited for this task.

In sum, while the core modeling ideas underlying SRSum could be realized differently, using a
feature engineering-based approach, our deep-learning approach proves to be more effective.

7.4 Threshold Parameter λ

Recall from Section 3.8 that after giving a salience score to each sentence, we greedily select the
sentence with the highest score for inclusion in the final summary until the length constraint is
reached. During the process, a parameter λ is used to avoid redundant sentences by discarding
sentences whose bi-gram overlap with already selected sentences is larger than 1 − λ; see Equa-
tion (22). To investigate the sensitivity of our choice of λ, we examine the performance of SRSum
with the threshold parameter λ ranging from 0 to 0.9 with a step size of 0.05. The results are shown
in Figure 11, where we plot performance in terms of ROUGE-1 and ROUGE-2 against λ. Generally,
the performance of SRSum is not sensitive to the setting of λ for values less than 0.8, with the best
performance achieved around 0.65 to 0.75. When λ is over 0.8, the performance drops sharply. This
is because some important sentences with little redundancy are dropped from the summary.

7.5 Attention

We have illustrated our CSR-, TSR-, and QSR-based attention mechanisms with some examples
in Figure 9. Here, we analyze the performance of these attention mechanisms in Table 12, using
the same data as in Section 6.1. Generally, without CSR-, TSR-, and QSR-based attentions, SRSum
drops around 0.3%pt–0.5%pt in terms of ROUGE-2. The decreases differ between the six datasets,
with larger decreases on the DUC 2001, 2002, 2005, and 2006 datasets and smaller decreases on
the DUC 2004 and 2007 datasets. Interestingly, the different types of attention, CSR, TSR, and
QSR, all yield comparable improvements over SRSum without attention. But their contribution is
complementary as removing all the attention mechanisms leads to further decreases compared
with removing only one of them, on all metrics and datasets, demonstrating the need for all three
types of attention.

8 CONCLUSIONS & FUTURE WORK

This article presents a novel neural network model, SRSum, to automatically learn features con-
tained in sentences and in its CSR, TSR, and QSR relations between sentences. We have conducted
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Table 12. Analyzing Attention Mechanisms on the Multi-Document Summarization Task (%)

Removed ROUGE-1 decrease ROUGE-2 decrease

DUC 2001

CSR attention 0.71 0.35

TSR attention 0.33 0.19

CSR+TSR attention 0.77 0.38

DUC 2002

CSR attention 0.63 0.31

TSR attention 0.29 0.11

CSR+TSR attention 0.65 0.34

DUC 2004

CSR attention 0.37 0.27

TSR attention 0.21 0.09

CSR+TSR attention 0.39 0.30

DUC 2005

CSR attention 0.57 0.36

TSR attention 0.49 0.35

QSR attention 0.51 0.33

CSR+TSR+QSR attention 0.61 0.41

DUC 2006

CSR attention 0.62 0.34

TSR attention 0.51 0.32

QSR attention 0.67 0.42

CSR+TSR+QSR attention 0.71 0.45

DUC 2007

CSR attention 0.28 0.23

TSR attention 0.24 0.21

QSR attention 0.49 0.31

CSR+TSR+QSR attention 0.50 0.32

(All models in this table are retrained in the same procedure as we train SRSum. For example, if we remove

the CSR attention from SRSum, then the left model is considered as a new model and retrained.)

extensive experiments on the DUC multi-document summarization datasets and query-focused
multi-document summarization datasets. On all datasets, SRSum outperforms the baselines and
achieves the best published performance on the DUC 2001, 2002, and 2004 datasets.

Based on our experimental results and subsequent analyses, we conclude that (1) to generate
a better summary, leveraging sentence relations is necessary, mostly because sentence relations
can influence the understanding of sentence meaning or even the article structure, both of which
are important factors to consider when people write a summary; (2) our CSR, TSR, and QSR-based
attention mechanisms show potential in being able to mimic aspects of human reading behaviors,
i.e., the abilities to be context-aware, to be aware of the main idea of an article, and to be aware of
answer sentences.

Despite the improvements of our summarization model over existing methods, it also has limita-
tions. First, the model has a complex neural network architecture. Proper training of such complex
networks is often a time-consuming task. Second, even though we carry out experiments to evalu-
ate the effectiveness of each component (SFSum, PriorSum, CSRSum, TSRSum, QSRSum) and show
some examples, it is still hard to give an intuitive explanation of how the learned latent features
work, due to the characteristics of deep learning.
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We believe our work can be advanced and extended in several directions: SRSum can be en-
riched by introducing a mechanism to explicitly model fine-grained sentence relations, such as
parallelism relations, progressive relations, inductive reasoning relations and deductive reason-
ing relations (Song et al. 2016). Variants of SRSum can be also extended to other tasks, such as
abstractive summarization or summarization on social text streams (Ren et al. 2013, 2016b).
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