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ABSTRACT
Information networks are ubiquitous in many applications. A pop-
ular way to facilitate the information in a network is to embed
the network structure into low-dimension spaces where each node
is represented as a vector. The learned representations have been
proven to advance various network analysis tasks such as link
prediction and node classification. The majority of existing em-
bedding algorithms are designed for the networks with one type
of nodes and one dimension of relations among nodes. However,
many networks in the real-world complex systems have multiple
types of nodes and multiple dimensions of relations. For example,
an e-commerce network can have users and items, and items can
be viewed or purchased by users, corresponding to two dimensions
of relations. In addition, some types of nodes can present hier-
archical structure. For example, authors in publication networks
are associated to affiliations; and items in e-commerce networks
belong to categories. Most of existing methods cannot be natu-
rally applicable to these networks. In this paper, we aim to learn
representations for networks with multiple dimensions and hierar-
chical structure. In particular, we provide an approach to capture
independent information from each dimension and dependent infor-
mation across dimensions and propose a framework MINES, which
performs Multi-dImension Network Embedding with hierarchical
Structure. Experimental results on a network from a real-world
e-commerce website demonstrate the effectiveness of the proposed
framework.
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1 INTRODUCTION
We are living in a connected world where information networks
are ubiquitous. Some examples of information networks include
social networks, publication networks, the World Wide Web and
e-commerce networks. Network embedding, aiming to learn vector
representations for nodes, has attracted increasing attention in
recent years. Many advanced network embedding algorithms have
emerged such as Deepwalk [26], LINE [29] and Metapath2vec [11],
which have been proven to help numerous network analysis tasks
such as link prediction [18], node classification [5][33] and network
visualization [21][28].

Most of existing embedding algorithms are designed for net-
works with one type of nodes and one dimension of relations
among nodes. However, many networks in real-world complex
systems contain multiple dimensions of relations among nodes. For
example, in social networking sites such as Facebook, two users
could be connected by friend relations, and via various social in-
teractions; in the transportation network [3], two cities could be
connected via various means of transportations such as train, high-
way and airplane; while in e-commerce networks, items can be
viewed and purchased by users, corresponding to two dimensions
of relations between users and items. In addition, some of the nodes
can present certain hierarchical structure. For example, in publi-
cation networks, authors are associated to affiliations; while in
e-commerce networks, items are organized by categories. A typical
example of multi-dimensional networks with hierarchical struc-
ture is illustrated in Figure 1 where there are two types of nodes
U = {u1,u2,u3,u4} and T = {t1, t2, t3, t4}, and C = {c1, c2, c3}
is the set of parent nodes. The relations of nodes in U, nodes in
T and nodes betweenU and T are two-dimensional; while each
node inU is associated to one parent in C. The vast majority of
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Figure 1: An illustrative example of amulti-dimensional net-
work with hierarchical structure

existing embedding algorithms cannot be naturally applicable to
multi-dimensional networks with hierarchical structure as shown
in Figure 1.

In this paper, we aim to learn representations of nodes in net-
works with multiple dimensions and hierarchical structure. In par-
ticular, we study approaches (1) to mathematically capture multi-
dimensional information and hierarchical structure; and (2) to in-
corporate such information simultaneously for embedding. Conse-
quently, we propose a framework MINES for Multi-dImensional
Network Embedding with hierarchical Structure. Our major con-
tributions are summarized as follows:

• Providing a principled approach to model multi-dimensional
networks, which can capture independent information from
each dimension and dependent information across dimen-
sions;
• Proposing a framework MINES, which incorporates multi-
dimensional relations and hierarchical structure into a co-
herent model for node representation learning; and
• Validating the effectiveness of the proposed framework in a
real-world e-commerce network.

The rest of this paper is arranged as follows. In Section 2, we
review some works that are related to our problem. The problem
of embedding networks with multiple dimensions and hierarchi-
cal structure to vector space is formally defined in Section 3. The
approach to model networks with multiple dimensions and hierar-
chical structure and the proposed framework with an optimization
method are introduced in Section 4. The experiments on a real-
world e-commerce network with discussions are presented in Sec-
tion 5. The conclusion and future work are presented in Section 6.

2 RELATEDWORK
Our work is related to multi-dimensional network analysis and
network embedding. In this section, we briefly review them.

2.1 Multi-dimensional Network Analysis
Network analysis has been extensively studied for many years
[34][35][6][14][2][7]. Multidimensional networks, which are quite
ubiquitous in the real-world applications, have attracted increasing
attention. In [3], the authors introduced a few examples of real-
world multidimensional networks, and they also defined measures
such as degree, neighbors for the multidimensional networks. More
measures for the multidimensional networks are introduced in [22].
The classic link prediction problem has been extended to multidi-
mensional networks with the new problem “what is the probability
that a new link between two nodes will form in a specific dimen-
sion?” [27]. Multidimensional versions of the Common Neighbors
and Adamic-Adar have been introduced to solve this problem [27].
In [4], the authors studied the community discovery problem in the
multidimensional network setting. In [16], the authors investigated
friendship maintenance and prediction in multidimensional social
networks.

2.2 Network Embedding
Networks can be represented by adjacency matrices; however, these
representations are too sparse and high-dimensional. Many classic
methods such as Laplacian eigenmap [1] and IsoMap [30] have
been proposed to learn low-dimensional representations. These
methods work fine on small size networks but cannot be scaled
to very large networks. Inspired by word2vec [23][25], DeepWalk
and LINE are proposed recently which can be applied to very large
scale networks. DeepWalk regards the nodes in the network as the
“words” of an artificial language and uses random walk to generate
the “sentences” for this language. Then, following the procedure of
word2vec, the representations for the nodes can be learned. LINE
tries to capture both the first order and second order proximity in
the representations. node2vec [13] extends DeepWalk by adding
parameters to introduce the biased random walk. These network
embedding methods have shown effectiveness in various tasks
on many homogeneous networks. In [11], the authors extended
DeepWalk method to heterogeneous networks by introducing meta-
path based random walks. In [9], the authors also facilitate the
meta-path to learn the heterogeneous network embedding, while
they focus on the selection of the meta-path. In [8], the authors
facilitate deep architectures to perform heterogeneous network
embedding. In [32], a signed network embedding algorithm SiNE is
proposed based on the notion that a user should be closer to their
“friend” than their “enemy”. In [20], the authors try to preserve both
local and global information in the network for network embedding.
There are also works on attributed network embedding [17][31].
Two recent surveys [10][12] give a comprehensive overview of
network embedding algorithms. However, most of the existing
methods cannot naturally be applicable to networks with multiple
dimensions of relations and hierarchical structure. In this paper,
we aim to model the multi-dimensional relations and hierarchical
structure and propose a framework to embed these networks to
vector space.

3 PROBLEM STATEMENT
In the multi-dimensional networks, we have different types of nodes
and multiple dimensions of relations. Assume that there areK types



of nodes in total and letVi = {v
(i)
1 ,v

(i)
2 , . . . ,v

(i)
Ni
} be the set of the

i-th type with Ni nodes. Let V denote the set of all the nodes

V =
K⋃
i=1
Vi . Some types of nodes in the network might present

hierarchical structure. In other words, these nodes are associated
with categories. For simplicity, we assume all the types of nodes
have hierarchical structures with a depth of 2, and we name the
parent nodes as categories in this case. Note that though in this
work, we focus on the hierarchical structures with a depth of 2,
it is straightforward to apply the proposed framework for deeper
hierarchical structures. We set Ci = {c

(i)
1 , c

(i)
2 , . . . , c

(i)
Mi
} as the set

ofMi categories for the i-th type of nodes, and set T(i) ∈ RNi×Mi

as the matrix that describes the category information, for the i-th
type of nodes.

Two nodes could be connected via multiple relations, and we
regard each type of relations as a dimension. Thus, nodes from the
same type or different types can be connected in the same dimen-
sion. These connections can be described by adjacency matrices
(for the same type nodes) and the interaction matrices (for different
types of nodes). Let A(i)d ∈ R

Ni×Ni be the adjacency matrix of the i-

th node type and H(i, j)d ∈ RNi×Nj be the interaction matrix between
the i-th and j-th types of node in the d-th dimension. We target
to learn representations for each node in each dimension of the
network. LetUd

(i) = {ud
(i)
1 , ud

(i)
2 , . . . , ud

(i)
Ni
} denote the represen-

tations of i-th type of nodes in the dimension d (d = 1, . . .D) where
D is the number of dimensions.

With the aforementioned notations and definitions, our problem
can be formally defined as follow:

Given

• K different sets of nodes, i.e., Vi = {v
(i)
1 ,v

(i)
2 , . . . ,v

(i)
Ni
} (i =

1, . . . ,K);
• multi-dimensional relations among the nodes, i.e., A(i)d (i =

1, . . . ,K) and H(i, j)d (i, j = 1, . . . ,K ; i , j;d = 1, . . . ,D);
• the hierarchical structure information, i.e., Ti (i = 1, . . . ,K).

We aim to learn a set of representations for all nodes, i.e.,

Ud
(i) = {ud

(i)
1 , ud

(i)
2 , . . . , ud

(i)
Ni
} (i = 1, . . . ,K)

in each dimension d (d = 1, . . .D).

4 THE MULTI-DIMENSIONAL EMBEDDING
FRAMEWORKWITH HIERARCHICAL
STRUCTURE

In this section, wewill first introduce how tomodelmulti-dimensional
relations and hierarchical structure; and then discuss the proposed
framework with an optimization method.

4.1 Capturing Multi-Dimensional Relations
In a multi-dimensional network, all dimensions share the same
set of nodes, while having their own network structures in each
dimension. A straightforward way to learn representations for each
dimension is to perform the network embedding for each dimen-
sion, separately. This strategy treats each dimension independently

and completely ignores information across dimensions. Hence the
learned representations for different dimensions are not related.
However, dimensions are inherently related since they share the
same set of nodes. Thus, in this subsection, we study how to model
multi-dimensional relations.

Intuitively, each dimension should have its independent infor-
mation individually; while all dimensions should share dependent
information across dimensions. Therefore, the learned represen-
tations for each dimension should not only preserve independent
information from the dimension but also keep dependent informa-
tion across dimensions. To achieve this goal, for a given dimension
d , the representation ud for a node contains two components – (1)
one component u for the information shared across dimensions;
and (2) one component ed specific to the dimension d . With these
two components, we can rewrite ud as:

ud = f (u, ed ), (1)

where f is a function to combine the shared component u and the
specific component ed . The shared component u not only captures
dependent information across dimensions but also helps the learned
representations of all dimensions to be related. The specific com-
ponent ed preserves independent information from the dimension
d .

4.2 Capturing Hierarchical Structure
For these nodes which have the hierarchical structure, we also need
to model its category information (or parents). The category infor-
mation is actually shared by all the dimensions, hence it should be
indicated in the shared component of representations. For the nodes
in the same category, they should also share the similar character-
istics. Therefore, to model the hierarchical structure, the shared
component of the node representation should further contain two
components – (1) one component cu indicates category informa-
tion which is shared by all the nodes in the category, and (2) one
component su is specific to the node. With the defined components,
we can further rewrite u in Eq. (1) as:

u = д(cu , su ) (2)

where д is the function to combine the category shared information
cu and the node specific information su . Note that Eq. (2) can be
easily extended to deeper hierarchical structure by further decom-
posing the category shared information cu .

4.3 The Proposed Framework
With approaches to capture multi-dimensional relations and hier-
archical structure, in this subsection, we introduce the embedding
framework MINES.

To learn the embeddings for the nodes in each dimension, we
follow the idea of skip-gram model [24], which is an effective and
efficient way to learn distributed representations of words. The
skip-gram model predicts surrounding context given a center word,
which can be formulated as follows:

p(N (wc )|wc ), (3)

where N (wc ) is the set of words that surround wordwc .
Similarly, we can use the skip-gram to model the network in a

given dimension d . For a node v , we define all nodes connected to



v as the “context” of v , which is formally defined as:

Nd (v) =
K⋃
i=1

N
(i)
d (v); (4)

where N
(i)
d is the set of i-th type of nodes that are connected to

node v in the dimension d . Note that the “context” of v consists of
different types of nodes, and we treat them differently, which will
be further explained later.

Then, given a center node v , we need to predict its “context” as:

pd (Nd (v)|v) =
K∏
i=1

p(N
(i)
d (v)|v) =

K∏
i=1

∏
v (i )j ∈N

(i )
d (v)

pd (v
(i)
j |v); (5)

where p(v(i)j |v) can be modeled using a softmax function as:

pd (v
(i)
j |v) =

exp(uTd ud
(i)
j )∑

v (i )∈Vi
exp(uTd ud

(i))
. (6)

In (6), the softmax function is over the i-th type nodesVi instead
of the whole nodes setV .

To learn the representations for the dimension d , we model this
problem as a maximum likelihood problem. In other words, we
need to maximize the probability that Nd (v) is the “context” of
node v for all the nodes v ∈ V . Hence, we need to maximize:

Pd =
∏
v ∈V

pd (Nd (v)|v). (7)

With allD dimensions, we need to jointlymaximize the following
term:

P =
D∏
d=1

Pd . (8)

Instead of maximizing Eq. (8), we equivalently minimize its neg-
ative logarithm with respect to the representationsU(i)d as:

min
{U
(i )
d }

d=1, . . .,D
i=1, . . .,K

− log P

⇔ min
{U
(i )
d }

d=1, . . .,D
i=1, . . .,K

−

D∑
d=1

log Pd (9)

⇔ min
{U
(i )
d }

d=1, . . .,D
i=1, . . .,K

−

D∑
d=1

∑
v ∈V

K∑
i=1

∑
v (i )j ∈N

(i )
d (v)

logpd (v
(i)
j |v).

4.4 An Optimization Method
There are two challenges to address when optimizing Eq. (9). First,
the minimization of Eq. (9) is computationally expensive due to
summation over the whole set of nodesVi when calculating each
term logpd (v

(i)
j |v). Second, how to choose the functions of f in

Eq. (1) and д in Eq. (2).
To solve computational challenge, we adopt the negative sam-

pling approach proposed in [25]. By using the negative sampling

method, we replace each logpd (v
(i)
j |v) with

Od (v,v
(i)
j ) = logσ (uTd ud

(i)
j ) +

Ne∑
n=1

logσ (−uTd ud
(i)
(n)); (10)

where σ (x) = 1/(1 + exp(x)) is the sigmoid function, and Ne is
the number of negative samples. The negative samples are ran-
domly sampled from some noise distribution. For logpd (v

(i)
j |v),

the negative samples are sampled from node setVi according to
P
(i)
i(v)(v

(i)) ∼ d
3/4
v (i )

, as proposed in [25], where dv (i ) is the in-degree

of v(i) corresponding to the i(v)-th type of nodes and i(v) indicates
the type of nodev . Note again, for i-th type of nodev(i)j , we sample
the negative samples from the i-th type of nodes setVi instead of
the whole nodes setV .

We adopt mini-batch Stochastic Gradient Descent (SGD) to opti-
mize the problem. In each step, a mini-batch of edges of the same
type are sampled according to their weights. Here, by “same” type
of edge, we mean, these edges have same types of nodes for source
and target nodes respectively and also the relations between them
is in the same dimension. For each sampled edge, the source node
is treated as v and the target node is treated as v(i)j in (10). The

derivatives for v , v(i)j and v(i)
(n) are

∂Od (v,v
(i)
j )

∂ud
= (1 − σ (uTd ud

(i)
j ))ud

(i)
j −

Ne∑
n=1
(1 − σ (−uTd ud

(i)
(n)))ud

(i)
(n);

∂Od (v,v
(i)
j )

∂ud
(i)
j

= (1 − σ (uTd ud
(i)
j ))ud ; (11)

∂Od (v,v
(i)
j )

∂ud
(i)
(n)

= −(1 − σ (−uTd ud
(i)
(n)))ud ,n = 1, . . . ,Ne .

Next we discuss how to choose f and д functions. In fact, f is
used to combine the dimension shared component u and dimension-
specific component cd . It can be a linear function, a non-linear
function (e.g., exponential functions) or even can be automatically
learned (e.g., neural networks). In this work, we choose a linear
function f . In other words, we define as – f (u, ed ) = u+cd . We also
use a similar function for д. We would like to leave the investigation
of other choices of f and д as one future direction. With choices of
f and д, the representations for nodes can be rewritten as:

ud = cu + su + ed ; (12)

ud
(i)
j = cu

(i)
j + su

(i)
j + ed

(i)
j ; (13)

ud
(i)
(n) = cu

(i)
(n) + su

(i)
(n) + ed

(i)
(n). (14)

We need to update cu , su , ed , cu j , su j , ed j , cu (n), su (n) and ed (n).
We update these representations using Gradient Decent (GD).

To update the representations for v , we need to update its three
components cu , su and cd according to (15).



cu ← cu + ρ ·
∂Od (v,v

(i)
h )

∂ud
;

su ← su + ρ ·
∂Od (v,v

(i)
h )

∂ud
; (15)

ed ← ed + ρ ·
∂Od (v,v

(i)
h )

∂ud
.

Similarly, to update the representations for v(i)j , we need to up-

date its three components cu
(i)
j , su

(i)
j and cd

(i)
j according to (16).

cu
(i)
j ← cu

(i)
j + ρ ·

∂Od (v,v
(i)
j )

∂ud
(i)
j

;

su
(i)
j ← su

(i)
j + ρ ·

∂Od (v,v
(i)
j )

∂ud
(i)
j

; (16)

ed
(i)
j ← ed

(i)
j + ρ ·

∂Od (v,v
(i)
j )

∂ud
(i)
j

.

Finally, to update the representations for v(i)
(n), n = 1, . . . ,Ne , we

need to update their three components cu
(i)
(n), su

(i)
(n) and cd

(i)
(n) ac-

cording to (17) respectively.

cu
(i)
(n) ← cu

(i)
(n) + ρ ·

∂Od (v,v
(i)
j )

∂ud
(i)
(n)

,n = 1, . . .Ne;

su
(i)
(n) ← su

(i)
(n) + ρ ·

∂Od (v,v
(i)
j )

∂ud
(i)
(n)

,n = 1, . . .Ne; (17)

ed
(i)
(n) ← ed

(i)
(n) + ρ ·

∂Od (v,v
(i)
j )

∂ud
(i)
(n)

,n = 1, . . .Ne .

We summarize the optimization procedure in Algorithm 1. In
the algorithm, the input includes the number of mini-batch size
m, the training size S , the dimension of representations dim, the
number of negative samples Ne , the learning rate ρ and the set
of all the edges E in the network. In line 1, we initialize all the
components for all the representations. Then, we sample a set of
same type edges SE from E in line 4. In line 6, for each edge, we
sample Ne negative samples. We calculate the gradients and update
the components in lines 7 and 8, respectively. Finally, we combine
the components to form the representations for each node in each
dimension in line 12.

To efficiently sample the edges and negatives samples, we adopt
the alias methods proposed in [15], which can generate a random
variable from a discrete distribution in constant time O(1). The
optimization with negative sampling takes O(dim · (Ne + 2) + Ne)
time, where Ne is the number of negative samples. hence, each step
of MINES takesO(dim · Ne) operations. If the training size is S , the
overall time complexity of MINES is O(S · dim · Ne).

Algorithm 1: Optimization procedure
Input: Ne ,m, S , ρ, dim, E
Output: {U(i)d }

d=1, ...,D
i=1, ...,K

1 Initialize cu
(i)
j , su

(i)
j and ed

(i)
j , as dim dimension vectors

randomly, for d = 1, . . . ,D, i = 1, . . . ,K and j = 1, . . . ,Ni ;
2 s = 0;
3 while s < S do
4 Sample a set ofm edges of the same type SE from E;
5 for e = (v,v(i)j ) ∈ SE do

6 Sample a set of Ne negative samples {v(i)
(n)}n=1, ...,Ne ;

7 Calculate the gradients according to (11);
8 Update the corresponding vectors according to (15),

(16) and (17);
9 end

10 s ← s +m.
11 end
12 ud

(i)
j = cu

(i)
j + su

(i)
j + ed

(i)
j ; for d = 1, . . . ,D, i = 1, . . . ,K and

j = 1, . . . ,Ni ;
13 return {U(i)d }

d=1, ...,D
i=1, ...,K .

5 EXPERIMENTS
In this section, we present the experimental details to verify the
effectiveness of the proposed framework. We first introduce the
dataset we will use in the evaluation. Then, we describe the experi-
mental settings. Finally, we present the experimental results with
discussions and study the key parameter in the proposed frame-
work.

5.1 Dataset
In our experiments, we sample data from JD.com, which is one of the
largest e-commerce companies. In our dataset, we have two types
of nodes: users and items. The items have hierarchical structure and
each item belongs to some predefined categories. Users can perform
various behaviors on items such as “view", “save", and “purchase".
In this work, we collect two behaviors, i.e., “view” and “purchase”,
to construct two-dimensional relations between users and items.
In addition, we collect two other relations: one is the “view session”
of a user, while another is the “purchase basket” of the user.

A view session is a sequence of items that are viewed by a user
within a period of time. It is intuitively to understand the items that
are viewed within a short period by the same user should be similar.
To incorporate these relations into the network, we construct an
item-item view network by connecting the items that are viewedw
items before or after a given item in a session with this item, where
w is the window size. In this work, we set the window size to 5.
These edges are in the “view” dimension and they are weighted
where the weight is the co-occurrence frequency.

A purchase basket is a set of items that are purchased by a user
at the same time. Items that are purchased in the same basket are
supposed to be related to each other. To incorporate these relations,
we construct an item-item purchase network. In particular, we
connect two items if they are purchased in the same basket. These



# items 401,922
# users 17,806

# categories 2,788
# item-item (view) 6,402,586
# user-user (view) 13,651,206
# user-item (view) 962,362

# item-item (purchase) 3,211,660
# user-user (purchase) 6,870,510
# user-item (purchase) 485,656

Table 1: The statistics of the network

edges are weighted where the weight is the frequency of the two
items presenting in the same basket. In the other way around,
users that have “viewed” or “purchased” the same item also shows
similarity. In each dimension, we connected users that have “viewed”
or “purchased” the same items.

To sum up, in the constructed multidimensional e-commerce
network, we have two types of nodes, i.e., the users and the items,
and the items have hierarchical structure. There are two dimensions,
i.e., the “view” dimension and the “purchase” dimension. We can
conclude that the constructed network has all the characteristics
of networks we want to study in this work; hence it is suitable for
us to use the dataset to evaluate the proposed framework. Some
statistics of the network are shown in Table 1.

5.2 Experimental Setting
Following the common way to assess network embedding algo-
rithms [13], we choose link prediction as the evaluation task. The
intuition is that a better embedding algorithm should learn bet-
ter node representations, which will lead to better link prediction
performance.

In the link prediction task, a certain fraction of edges are removed,
and we would like to predict whether these “missing” edges exist.

In our evaluation, we perform the link prediction task on the
two dimensions, separately. For each dimension, we remove the
user-item edges and use them as parts of the testing set. We set up
3 groups of experiments, where 10%, 30% and 50% of the user-item
edges are removed, respectively. To form the training set, we first
put all the remaining user-item edges into the training set, and then,
for each user-item edge in the training set, we randomly sample
an item that is not connected to this user and use this user and
non-connected item pair as the negative sample in the training set.
We form the testing set in the same way.

After removing the edges, we use the remaining network to
learn the representations for all the nodes. Then, to perform the
link prediction task, the representations for the edges (or the user
item pairs) should be learned.We use two different ways to combine
the representations of two nodes as the representation of the edge
(or user item pair) as used in [13].

• Element-wise addition Given two dim dimension repre-
sentations of two nodes, we add them element-wisely and
get a new dim dimension vector as the representation for
this pair of nodes.

• Element-wise multiplication Given two dim dimension
representations of two nodes, we multiply them element-
wisely and get a new dim dimension vector as the represen-
tation for this pair of nodes.

For all themethods, we use bothways to form the representations
for the pairs of nodes and report the results for each method.

After we form the representations for the pairs of the nodes in
the training set and the testing set, we train a binary classifier using
logistic regression on the training set and perform link prediction
on the testing set. In this work, we will use Micro-F1, Macro-F1 and
AUC as the metric to evaluate the link prediction performance.

5.3 Performance Comparison
To evaluate the performance of our algorithm, we compare the
performance of our algorithm with the following representative
baselines:
• LINE [29]: As LINE can only work for one-dimensional net-
work, we apply LINE to the two dimensions separately and
learn one set of representations for each dimension, respec-
tively. We treat categories as nodes, and add item-category
edges into the networks for LINE.
• DeepWalk [26]: We apply DeepWalk to the two dimensions
separately and learn two sets of representations. We treat
categories as nodes, and add item-category edges into the
networks for DeepWalk. DeepWalk can only work for un-
weighted networks, hence, we convert our network to un-
weighted network by ignoring the weights.
• Non-negative Matrix Factorization (NMF) [19]: We ap-
ply it to the user-item interaction matrix and use the factor-
ized two matrices as the embeddings for the users and items.
NMF is also applied to the two dimensions, separately.
• Co-NMF: In Co-NMF, we perform a co-factorization on the
multi-dimensional networks and learn unified user repre-
sentations for all dimensions. Basically Co-NMF assumes all
dimensions share the same embeddings, which completely
ignores independent information from each dimension.
• MINES(S): This is a variant of our framework MINES. In-
stead of using all three components cu , su and ed , we only
use the shared components cu and su to form the represen-
tation for a node v .

We summarize the experiments results for the “view” dimension
and “purchase” dimension in Table 2, and Table 3, respectively. We
make the following observations from Table 2:
• For all methods, using the Element-wise multiplication
is better than Element-wise addition, which is consistent
with the observation in [13].
• The performance of Co-NMF is worse than that of NMF,
which indicates that the independent information from each
dimension is very important to accurately predict links in
that dimension.
• MINES shows better performance than MINES(S), which
further shows the importance of the dimension specific in-
formation.
• As we remove more percent of edges, the performance of
all methods decrease in all three measures when using the
Element-wise multiplication.



Addition Multiplication

% removed edges 10% 30% 50% 10% 30% 50%

Micro-F1(%)

MINES 72.77 72.76 72.65 83.89 82.57 81.32
LINE 71.00 70.83 70.72 79.42 78.26 76.84

DeepWalk 69.39 69.03 68.87 76.45 76.10 74.94
NMF 59.80 59.79 59.86 78.16 78.16 77.98

Co-NMF 56.66 56.83 56.93 76.96 77.00 76.87
MINES(S) 67.22 66.78 66.82 76.98 76.28 75.78

Macro-F1(%)

MINES 72.74 72.72 72.58 83.75 82.35 80.98
LINE 70.94 70.82 70.78 79.17 77.95 76.44

DeepWalk 69.28 68.92 68.79 76.22 75.79 74.63
NMF 59.77 59.77 59.86 78.08 78.07 77.90

Co-NMF 56.66 56.83 56.93 76.84 76.87 76.74
MINES(S) 67.21 66.77 68.81 76.96 76.25 75.77

AUC

MINES 0.8037 0.8040 0.8036 0.9261 0.9180 0.9146
LINE 0.7757 0.7757 0.7732 0.8879 0.8759 0.8636

DeepWalk 0.7478 0.7434 0.7392 0.8522 0.8517 0.8351
NMF 0.6516 0.6527 0.6529 0.8741 0.8739 0.8729

Co-NMF 0.5912 0.5927 0.5933 0.8603 0.8605 0.8596
MINES(S) 0.7315 0.7271 0.7278 0.8530 0.8456 0.8409

Table 2: Link Prediction Performance Comparison: The View Dimension

Addition Multiplication

% removed edges 10% 30% 50% 10% 30% 50%

Micro-F1(%)

MINES 78.48 77.94 77.62 90.93 89.74 88.57
LINE 71.55 70.84 70.63 87.88 86.94 85.69

DeepWalk 67.08 67.46 67.53 82.76 82.35 80.54
NMF 68.20 68.11 68.18 83.43 83.65 83.44

Co-NMF 56.28 56.36 56.31 76.98 76.83 76.75
MINES(S) 70.36 70.77 70.54 83.63 82.97 82.20

Macro-F1(%)

MINES 78.47 77.92 77.59 90.89 89.66 88.49
LINE 71.48 70.83 70.51 87.85 86.87 85.58

DeepWalk 67.03 67.38 67.52 82.70 82.27 80.41
NMF 68.19 68.10 68.18 83.36 83.59 83.36

Co-NMF 56.24 56.33 56.27 76.84 76.67 76.60
MINES(S) 70.34 70.75 70.52 83.61 82.96 82.19

AUC

MINES 0.8662 0.8644 0.8623 0.9762 0.9725 0.9690
LINE 0.7892 0.7791 0.7759 0.9614 0.9518 0.9455

DeepWalk 0.7109 0.7134 0.7128 0.9278 0.9256 0.9252
NMF 0.7544 0.7528 0.7538 0.9346 0.9347 0.9342

Co-NMF 0.5826 0.5834 0.5820 0.8592 0.8585 0.8568
MINES(S) 0.7740 0.7775 0.7758 0.9146 0.9036 0.9101

Table 3: Link Prediction Performance Comparison: The Purchase Dimension

• The performance of DeepWalk is worse than LINE and NMF.
This is mainly because DeepWalk can only work for un-
weighted networks and cannot take advantage of the edge
weights.
• The proposed framework MINES obtains the best perfor-
mance. For example, MINES boosts the performance 3%− 5%
compared to the best baseline when 10% − 50% edges are

moved. The major reason is the proposed framework has
two components to capture the multi-dimensional relations
and the hierarchical structure.

We have similar observations for the “purchase” dimension –
(1) using the Element-wise multiplication is better than using



Figure 2: Parameter Analysis: The View Dimension

Figure 3: Parameter Analysis: The Purchase Dimension

Element-wise addition and (2) MINES outperforms all the base-
lines; for example, MINES obtains over 2% improvement in terms
of all the measures compared to the best baseline.

5.4 Parameter Analysis
In this section, we analyze how the dimension of the learned rep-
resentations in our method affects the performance of the link
prediction task. In particular, we set the dimension of the represen-
tations to {16, 32, 64, 128} with the setting of 50% edges removed.
The results are reported in in Figure 2 and Figure 3 for view and
purchase dimensions, separately. Note that we ignore the results
with other settings since we can make similar observations.

As shown in Figure 2 and Figure 3, in both view and purchase
dimensions, the Micro-F1 and Macro-F1 first increase as the dimen-
sion of the learned representations gets large, and then decrease.
Both the Micro-F1 and Macro-F1 reach the maximum when the
dimension of the representations is 32 in both view and purchase
dimension. AUC also increases first and then decrease as the dimen-
sion of the representations gets larger. However, the AUC score
reaches the maximum when the dimension of the representation is
64.

In summary, the performance first increases and then decreases
as the dimension of the representations gets larger. The dimension
of the representations affects the different measures differently.

6 CONCLUSION
In this paper, we propose an approach to model multi-dimensional
networks, which can capture independent information from each
dimension and dependent information across dimensions. Based
on this approach, we propose the MINES framework which can
embed multi-dimensional network with hierarchical structure to
low-dimensional vector spaces. We can learn a set of node repre-
sentations for each dimension using this framework. The learned
representations for each dimension will contain the hierarchical in-
formation, the independent information from the specific dimension
and also dependent information across dimensions. We evaluate the
effectiveness of our framework on a multi-dimensional e-commerce
network. The results of our experiments show the advancement of
our framework.

In this work, we utilize linear functions to model the across di-
mension information and the hierarchical structure information.
In our future work, more complicated non-linear functions such
as exponential functions or even the neural networks can be used.
Meanwhile, as a limitation in our work, we only focus on hierarchi-
cal structures with depth of 2 in this paper. As another direction in
our future work, we would like to investigate the proposed frame-
work with deeper hierarchical structures. Real-world networks
typically evolve such as addition of new nodes and links, and dele-
tion of old nodes and links. Therefore, multi-dimensional network
embedding with dynamics should provide new insights in future.
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