
Rethinking Reinforcement Learning for Recommendation:
A Prompt Perspective

Xin Xin
Shandong University

China
xinxin@sdu.edu.cn

Tiago Pimentel
University of Cambridge

United Kingdom
tp472@cam.ac.uk

Alexandros Karatzoglou
Google Research
United Kingdom

alexkz@google.com

Pengjie Ren
Shandong University

China
jay.ren@outlook.com

Konstantina Christakopoulou
Google

United States
konchris@google.com

Zhaochun Ren∗
Shandong University

China
zhaochun.ren@sdu.edu.cn

ABSTRACT
Modern recommender systems aim to improve user experience. As
reinforcement learning (RL) naturally fits this objective—maximizing
an user’s reward per session—it has become an emerging topic
in recommender systems. Developing RL-based recommendation
methods, however, is not trivial due to the offline training challenge.
Specifically, the keystone of traditional RL is to train an agent with
large amounts of online exploration making lots of ‘errors’ in the
process. In the recommendation setting, though, we cannot afford
the price of making ‘errors’ online. As a result, the agent needs to be
trained through offline historical implicit feedback, collected under
different recommendation policies; traditional RL algorithms may
lead to sub-optimal policies under these offline training settings.

Here we propose a new learning paradigm—namely Prompt-
Based Reinforcement Learning (PRL)—for the offline training of
RL-based recommendation agents. While traditional RL algorithms
attempt to map state-action input pairs to their expected rewards
(e.g., Q-values), PRL directly infers actions (i.e., recommended items)
from state-reward inputs. In short, the agents are trained to predict
a recommended item given the prior interactions and an observed
reward value—with simple supervised learning. At deployment
time, this historical (training) data acts as a knowledge base, while
the state-reward pairs are used as a prompt. The agents are thus
used to answer the question: Which item should be recommended
given the prior interactions & the prompted reward value? We imple-
ment PRL with four notable recommendation models and conduct
experiments on two real-world e-commerce datasets. Experimen-
tal results demonstrate the superior performance of our proposed
methods.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’22, July 11–15, 2022, Madrid, Spain
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8732-3/22/07. . . $15.00
https://doi.org/10.1145/3477495.3531714

CCS CONCEPTS
• Information systems→ Recommender systems; Retrieval
models and ranking; Novelty in information retrieval.

KEYWORDS
Next ItemRecommendation; Reinforcement Learning; Recommender
Systems; Session-based Recommendation

ACM Reference Format:
Xin Xin, Tiago Pimentel, Alexandros Karatzoglou, Pengjie Ren, Konstantina
Christakopoulou, and Zhaochun Ren. 2022. Rethinking Reinforcement Learn-
ing for Recommendation: A Prompt Perspective. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR ’22), July 11–15, 2022, Madrid, Spain. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3477495.3531714

1 INTRODUCTION
Next item recommender systems are one of the core components
of several modern online web services, including music or video
streaming services [45], and e-commerce sites [17]. They are holis-
tically ingrained into these applications, helping users navigate and
find new content. As a general rule, these systems are modelled as
sequence prediction tasks—they thus answer the question:What is
the next item the user would be interested to interact with given the
past interactions—and are typically implemented on top of recur-
rent neural networks or other generative sequential models. Con-
ventional next item recommendation models are usually trained
through an auto-regressive fashion, in which the model is trained
to recover the historical interaction sequence [14, 22, 45]. Similar
learning objectives are also used in language modeling in the field
of natural language processing (NLP). Simply predicting the next
item a user will interact with, however, may be a poor objective;
one might prefer to instead maximise long-term engagement, for
instance, or the diversity of the consumed items.

Reinforcement learning (RL) has been successfully employed in
planning and controlling [29, 36]. An RL agent is trained to take ac-
tions which, given the observed state of the environment, maximize
a pre-defined reward. Existing value-based RL algorithms usually
involve policy evaluation and policy improvement, as shown in Fig-
ures 1a and 1b, respectively. Policy evaluation aims to learn a model
which maps the state-action input pairs to the expected cumulative
rewards (i.e., Q-values). Policy improvement selects the action with

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1347

https://doi.org/10.1145/3477495.3531714
https://doi.org/10.1145/3477495.3531714

(a) Policy evaluation. (b) Policy improvement. (c) PRL.

Figure 1: Traditional RL algorithms involve policy evaluation (a) to predict the expected return (i.e., cumulative reward) and
then use policy improvement (b) to select actions with the highest return prediction. While PRL (c) aims to directly infer
actions given the prompt of current state and expected return.

the maximum Q-value prediction. The long-term nature of plan-
ning in RL fits naturally with desirable properties in recommender
systems (RS). The flexible reward setting in RL enables for flexible
customization of recommendation objectives. As a result, the use
of RL in recommendation has become an emerging topic [1, 9, 46].

However, developing RL-based recommendation methods is non-
trivial. The learning paradigm of RL trains the agent by interacting
with the environment and then observing the reward. The agents
are reinforced towards taking actions with higher cumulative re-
turns. This process needs a large amount of interactions taken by
the agent itself. Although some existing RL methods are claimed
to be “off-policy”, they still need the agent to step over plenty of
online interactions to refresh the replay buffer. Such a learning
paradigm is feasible in fields like gaming [36], since conducting
error-prone explorations does not come at a cost. In the field of RS,
however, we cannot afford the price of making errors, since bad
recommendation results will definitely affect user experience. As
a result, we want to train the RL recommendation agent through
fixed historical data without the agent being able to probe the en-
vironment. However, this historical data is not generated by the
target agent itself, but from different or even unknown behavior
policies. The expected quality of an estimated policy can be easily
affected by this discrepancy in distributions. This problem is know
as the offline training challenge.

Previous work attempted to address the offline training challenge
through inverse propensity scores [7], model-based user simulation
[8], or combining RL with supervised learning [43]. However, such
methods still suffer from factors of unbounded high variances [30],
biased user simulation [18] and Q-value estimation [10].

We propose Prompt-Based Reinforcement Learning (PRL), a new
paradigm for effective offline training of RL-based recommendation
agents. The concept of prompting is rooted in NLP [28], whereby
large language models have been shown to learn new tasks with a
single demonstration of an example. While PRL is not identical to
this few-shot NLP concept, it is a similar concept in that we achieve
the control of recommendation results by feeding the model with
different prompt templates. PRL uses the offline historical data as a
knowledge base while the state-reward pairs act as the prompt. The
agents are trained to answer the question of which item should be
recommended if the prompted reward value is expected to be achieved
under the given state. In the training stage a generative sequential
model is used to encode the users previous interactions into a

hidden state, which can be regarded as the state of the environment
in the RL setting. The current recommended item can be seen
as the action. From the offline data we can compute the exact
cumulative reward at each step of an interaction session. As a
result, the historical data can be organized in the template of {state,
cumulative reward}–>{observed action}. We then use a simple yet
effective supervised self-attentive block [41] to learn and store
such signals. During the inference stage, given the current state
we feed the model an expected cumulative reward we want to
obtain (e.g., twice the average cumulative reward of the current
step), the model can directly infer actions through querying the
historical knowledge base, as shown in Figure 1c. PRL enables the
recommendation agent to adjust its actions conditioning on the
prompt reward. For example, agent exploration can be effectively
achieved by introducing random noise on the prompt reward during
the inference stage. We verify the effectiveness of our approach by
implementing PRL with four renowned recommendation models.

To summarize, this work makes the following contributions:

• We propose prompt-based reinforcement learning for the
offline training of RL-based next item recommendation. We
propose to use the state-reward pairs as the prompt to infer
actions through querying the knowledge base of historical
implicit feedback data.
• We propose to use a supervised self-attentive block to learn
and store the signals between the input of state-reward pairs
and the output of actions.
• We implement PRL with four renowned next item recom-
mendation models as the state encoders, and conduct experi-
ments on two real world e-commerce datasets. Experimental
results demonstrate a generalized improvement of recom-
mendation performance.

2 CHALLENGE INVESTIGATION
We first formulate the task of next item recommendation. Then we
introduce reinforcement learning and analyse the offline training
challenge. After that, the concept of prompting is described.

2.1 Next Item Recommendation
Let I denote the entire set of items in a specific system, then
a user-item interaction sequence can be represented as 𝑥1:𝑡 =

{𝑥1, 𝑥2, ..., 𝑥𝑡−1, 𝑥𝑡 }, where 𝑥𝑖 ∈ I(0 < 𝑖 ≤ 𝑡) is the interacted

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1348

item at timestamp 𝑖 . Next item recommendation aims at recom-
mending items that a user might be interested in at timestep 𝑡 + 1
given the sequence of past items 𝑥1:𝑡 .

2.2 Reinforcement Learning and the Challenge
An RL agent is trained to take actions in an environment to get the
maximum cumulative reward. This task is usually formulated as
a Markov Decision Process (MDP) [11, 35, 36]. More precisely, for
next item recommendation, users can be seen as the environment,
while the MDP can be defined as tuples of (S,A, P, 𝑅, 𝜌0, 𝜆) where
• S: the space of all possible user states, which can be modeled
through previous item interactions. Concisely, we can use a
sequential model𝐺 to map the previous interaction sequence
before timestamp 𝑡 into a hidden state as s𝑡 = 𝐺 (𝑥1:𝑡) ∈ S
(𝑡 > 0). We will discuss prominent models for implementing
𝐺 (·) in section 5.
• A: the discrete action space which contains candidate items.
An action 𝑎 in the MDP represents the selection of a rec-
ommended item. In the offline training data, we can get the
action at each timestamp 𝑡 as 𝑎𝑡 = 𝑥𝑡+1.
• P: S×A×S → R is the state transition probability, describ-
ing how the environment state changes when an action is
performed in the environment.
• 𝑅: S × A → R is the reward function where 𝑟𝑡 denotes the
immediate reward at the 𝑡-th interaction step1. This is the
key component of RL, which enables the agent to be trained
in a customizable reward-driven fashion, such as promoting
purchases [43], increasing diversity [38] or dwell time [7].
• 𝜌0 describes the initial state distribution as s0 ∼ 𝜌0.
• 𝜆 is the discount factor for future rewards.

The goal of RL is to find a target policy 𝜋𝜃 (𝑎 |s) which maps the
user’s state s ∈ S into a probability distribution over actions 𝑎 ∈ A,
so that if the agent samples actions according to 𝜋𝜃 the system can
obtain the maximum expected cumulative reward:

max
𝜋𝜃
E𝜏∼𝜋𝜃 [𝑅(𝜏)], where 𝑅(𝜏) =

|𝜏 |∑︁
𝑡=0

𝜆𝑡𝑟𝑡 (s𝑡 , 𝑎𝑡), (1)

where 𝜃 denotes policy parameters and 𝜏 = (s0, 𝑎0, s1, ...) is the
sampled trajectory of the target policy with s0 ∼ 𝜌0, 𝑎𝑡 ∼ 𝜋𝜃 (·|s𝑡),
𝑠𝑡+1 ∼ P(·|s𝑡 , 𝑎𝑡).

2.2.1 On-Policy Optimization. On-policy optimization, e.g. policy-
gradient (PG) [42], is one of the most adopted methodologies to
solve Eq.(1). PG aims at directly deriving the gradients of the ex-
pected cumulative rewards with respect to policy parameters 𝜃 as:

∇ = E𝜏∼𝜋𝜃 [𝑅(𝜏)∇𝜃 log𝜋𝜃 (𝜏)] . (2)

Estimating this expectation requires a large amount of explorations
taken by the agent itself, as shown in Figure 2a. However, for the
offline training of RS from historical data, all we can estimate is:

∇′ = E𝜏∼𝛽 [𝑅(𝜏)∇𝜃 log𝜋𝜃 (𝜏)], (3)

where 𝛽 denotes the behavior data distribution of the historical
data. Obviously, there is a difference between the distributions 𝜋𝜃
1While in general a reward is not necessarily a deterministic function of a state–action
pair, we will assume so to simplify our exposition.

and 𝛽 . [7] proposed to introduce an inverse propensity score (IPS)
to correct the discrepancy at each timestamp as:

∇(𝑡) = 𝜋𝜃 (𝜏 (𝑡))
𝛽 (𝜏 (𝑡)) ∇

′(𝑡) ≈ 𝜋𝜃 (𝑎𝑡 |s𝑡)
𝛽 (𝑎𝑡 |s𝑡)

∇′(𝑡) (4)

However, estimating a behavior policy 𝛽 could be difficult [44]; and
the computed IPS can have unbounded high variance [1].

2.2.2 Off-Policy Optimization. Off-policy optimization methods
use a replay buffer to store past experiences and improve data
efficiency. Deep Q-learning [36] (DQN) is one of the most typical
off-policy methods. DQN utilizes policy evaluation (see Figure 1a)
to calculate Q-values2 and then policy improvement (see Figure 1b)
to select actions with the highest Q-values. The model in policy
evaluation is updated as follows:

𝜃 ← 𝜃 − 𝛼
𝜕 E𝑠,𝑎∼𝜋 ′

𝜃
(𝑄𝜃 (s, 𝑎) −𝑄𝑇 (s, 𝑎))2

𝜕𝜃
, where

𝑄𝑇 (s, 𝑎) = 𝑟 + 𝜆 max
𝑎′
Es′∼P(· |s,𝑎)𝑄𝜃 (s′, 𝑎′).

(5)

𝛼 is the learning rate, 𝑄𝜃 (s, 𝑎) denotes the Q-value calculated from
the model while𝑄𝑇 (s, 𝑎) is the target Q-value computed from time-
difference (TD) learning [4], 𝜋 ′

𝜃
denotes the policy used to build

and refresh the replay buffer. This off-policy method requires 𝜋 ′
𝜃
to

be defined as the previous version of 𝜋𝜃 [10, 36]. In other words,
the experiences stored in the replay buffer are still generated by the
agent itself and new explorations are needed to refresh the replay
buffer, as shown in Figure 2b.

However, when performing offline learning, historical training
data comes from different and typically unknown agents. To avoid
affecting user experience we anticipate that new explorations with
user involvement are not needed until the agent is well trained, as
shown in Figure 2c. In such setting, what we can update is:

𝜃 ← 𝜃 − 𝛼
𝜕 E𝑠,𝑎∼𝛽 (𝑄𝜃 (s, 𝑎) −𝑄 ′𝑇 (s, 𝑎))

2

𝜕𝜃
, where

𝑄 ′𝑇 (s, 𝑎) = 𝑟 + 𝜆 max
𝑎′
Es′∼P𝛽 (· |s,𝑎)𝑄𝜃 (s′, 𝑎′) .

(6)

where 𝑠 ′ ∼ P𝛽 (·|s, 𝑎) denotes that the next state 𝑠 ′ is sampled from
the offline data, rather than operating actions online and then ob-
serve the next state. Given that the state and action distribution in
𝛽 can be different from the target policy, the parameter update in
Eq.(6) can easily be biased. [10, 43] have shown that off-policy meth-
ods suffer from weak performance in the offline training setting.

2.2.3 Model-based RL. An alternative approach to train an RL rec-
ommendation agent is to use model-based reinforcement learning
[8, 16]. Model-based RL is based on amodel of the environment. The
agents can then be trained through on-policy or off-policy meth-
ods with the data generated from interactions with the simulated
environment rather than the real environment. As a result, users
would not be involved directly during the training stage. However,
model-based RL suffers from the following issues:
• The reward estimation of the simulator can be affected by
various biases in the training data [5, 18].

2The Q-value for a state-action pair (i.e.,𝑄 (s, 𝑎)) is defined as the expected cumulative
reward gain if the action 𝑎 is operated under the state s.

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1349

(a) On-policy optimization. (b) Off-policy optimization. (c) Offline training for RS.

Figure 2: On-policy optimizationmethods (a) need to learn from large amount of experiences taken by the agent itself. Off-policy
methods (b) improve the data efficiency through introducing a replay buffer to store the past experiences. However, the stored
experiences still come from the agent itself and new interactions are needed to refresh the buffer. For the offline training of RS
(c), the agent is expected to be trained from experiences of other agents without new explorations and users’ involvement.

Figure 3: The training framework of PRL. “emb” is short
for embedding. Prompt generation transforms the offline
historical training data into tuples: {cumulative reward 𝑅𝑡 ,
previous interactions𝑥1:𝑡 , interaction step 𝑡 }. Then prompt en-
coding encodes the tuples into latent representations. Finally,
a self-attentive block is used to learn the mapping function
between the prompt and the action. The model parameters
can be updated through a simple supervised cross-entropy
loss function.

• The transition between (user) states is dynamic and difficult
to model [25].
• The generalization ability of the constructed simulator is not
well justified [2].

2.3 Prompt and Knowledge Base
A new learning paradigm namely prompt learning has become
an emergent topic in the field of NLP. Different from the widely
adopted “pre-training and fine-tuning”—which first pre-trains the
model with tasks like languagemodeling and then fine-tunes learned
parameters for downstream tasks—prompt learning aims to use the
pre-trained model (which was pre-trained on a large training cor-
pus) as a knowledge base and then formulates the downstream
tasks as a prompt [28]. Since in the historical offline data we can

compute the exact cumulative reward at each interaction step3, the
historical offline data can be formulated in the following way {state,
cumulative reward}–>{observed action}, which can be intuitively
interpreted as the signal for: which action should be taken to obtain
the cumulative reward given the user state. During inference, we
can expect the model to suggest actions which, if taken, should
achieve the prompted reward in expectation, as shown in Figure
1c. Such a learning paradigm enables us to train the reward-driven
RL recommendation agent in a much simpler supervised fashion.
Note that, in this work, we exploit the concept of prompt to inspire
our approach, but we don’t investigate the complex prompt gen-
eration methods of NLP. The prompt used in this paper is the pair
of state and cumulative reward. We leave more advanced prompt
generation for recommendation as future work.

3 METHODOLOGY
In this section, we describe the detailed training and inference
procedures for next item recommendation with PRL.

3.1 PRL Training
Training PRL consists of prompt generation, prompt encoding, and
supervised attentive learning as shown in Figure 3.

3.1.1 Prompt Generation. Prompt generation aims to formulate
the offline training data as a knowledge template which tells us
which observed action 𝑥𝑡+1 should be taken if we want to get the
cumulative reward 𝑅𝑡 with 𝑥1:𝑡 as the previous user-item interac-
tions. In the offline training data, the cumulative reward 𝑅𝑡 at each
interaction step 𝑡 of a session can be exactly computed as:

𝑅𝑡 =

|𝜏 |∑︁
𝑡 ′=𝑡

𝜆𝑡
′
𝑟𝑡 ′, (7)

where |𝜏 | denotes the total steps of the interaction session. For each
interaction session in the offline training data, we can inefficiently
compute the cumulative reward 𝑅𝑡 at every step as shown in Eq.(7)
with a total time complexity of 𝑂 (|𝜏 |2). A more efficient solution
is to compute 𝑅1 firstly and then 𝑅𝑡+1 can be computed from 𝑅𝑡

3In this work, we do not consider the case of delayed rewards.

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1350

recursively by decreasing the reward 𝜆𝑡𝑟𝑡 . With this recursive pro-
cedure, we can compute these rewards in𝑂 (|𝜏 |) instead. Algorithm
1 shows the detailed procedure to reformulate the offline training
sequences D𝑠 as a prompt-based training set D𝑝 .

3.1.2 Prompt Encoding. Prompt encoding aims to use deep neu-
ral networks to map the generated prompt into latent represen-
tations. For the interaction sequence 𝑥1:𝑡 , plenty of research has
been proposed to capture the sequential signals, such as recurrent
neural network (RNN)-based methods [14], convolutional neural
network (CNN)-based methods [40, 45], and attention-based meth-
ods [22, 39]. We will give a more detailed description in section
5. The proposed PRL acts as a learning paradigm and all of these
methods can be used as the sequential model shown in Figure 3.

Take the gated recurrent units (GRU) [14] as an example, we first
embed each item 𝑥𝑖 into a dense representation x𝑖 ∈ R𝑑 , where
𝑑 denotes the embedding size. This can be done through a simple
embedding table lookup operation. Then, the hidden state s𝑡 for a
given sequence of 𝑥1:𝑡 is defined as:

s𝑡 = (1 − z𝑡)s𝑡−1 + z𝑡 ŝt
z𝑡 = 𝜎 (W𝑧x𝑡 + U𝑧s𝑡−1)

ŝt =𝑡𝑎𝑛ℎ(W𝑠x𝑡 + U𝑠 (g𝑡 ⊙ s𝑡−1))
g𝑡 = 𝜎 (W𝑔x𝑡 + U𝑔s𝑡−1),

(8)

where 𝜎 denotes the sigmoid function and ⊙ is element-wise prod-
uct.W𝑧 ,U𝑧 ,W𝑠 ,U𝑠 ,W𝑔,U𝑔 ∈ R𝑑×𝑑 are trainable parameters. In our
experiments, we use four renowned sequential models to encode
𝑥1:𝑡 . This allows us to verify the effectiveness and generalization
ability of the proposed PRL. We don’t elaborate on the details of all
models, though, since this is not the key point of this work.

The representation for cumulative reward 𝑅𝑡 is defined as:

e𝑅𝑡 = 𝑅𝑡 · e𝑟 , (9)

where e𝑟 ∈ R𝑑 is a trainable reward embedding. Another solution
would be using different reward embeddings for discretized rewards.
Besides, we also maintain a trainable embedding table H𝑇 ∈ R𝑇×𝑑
to encode the step information. The final representation for the
prompt {𝑅𝑡 ,𝑥1:𝑡 ,𝑡 } is formulated as:

P𝑡 = [e𝑅𝑡 , s𝑡 , h𝑡] ∈ R
3×𝑑 , (10)

where [·] denotes the stack operation.

Algorithm 1 Prompt generation from offline training data
Input: user-item interaction sequence set D𝑠 , reward settings
Output: prompt-based training set D𝑝

1: repeat
2: Sample an interaction sequence 𝑥1:𝑇 from D𝑠

3: Compute 𝑅1 according to Eq.(7)
4: for t=1 : 𝑇 − 1 do
5: D𝑝 .append({𝑅𝑡 ,𝑥1:𝑡 ,𝑡 },𝑥𝑡+1)
6: 𝑅𝑡+1 = 𝑅𝑡 − 𝜆𝑡𝑟𝑡
7: end for
8: D𝑠 .remove(𝑥1:𝑇)
9: until D𝑠 = ∅
10: return D𝑝

3.1.3 Supervised Attentive Learning. Given the encoded prompt
representation P𝑡 , we need a model to learn to map the signal be-
tween P𝑡 and observed action 𝑎𝑡 (i.e., 𝑥𝑡+1). Self-attention [41] has
been widely adopted in the field of NLP and has demonstrated im-
pressive model capability. Recently, there are also works [6, 20, 31]
attempting to introduce self-attention to RL. Inspired by this re-
search, we propose to use a self-attentive block to learn the mapping
signal. The dot-product based attention [41] is formulated as:

Attention(Q,K,V) = softmax
(
QK𝑇
√
𝑑

)
V, (11)

whereQ,K,V denote the queries, keys and values, respectively. The
attention computes a weighted addition of values according to the
importanceweights computed through the correlations between the
query and the key [22, 41]. The scale factor

√
𝑑 is used to normalize

the computed values to avoid large inner products, especially when
the dimension of the representations is large [22, 41].

Self-attention uses the same objects as queries, keys, and values.
In the proposed PRL, we convert P𝑡 to three representations, using
linear projections, and then feed them to the attention layer. The
residual connection [12] is introduced to incorporate the original
P𝑡 information. The final prompt representation P̃𝑡 is defined as:

P̃𝑡 = P𝑡 + Attention(W𝑞P𝑡 ,W𝑘P𝑡 ,W𝑣P𝑡), (12)

where W𝑞,W𝑘 ,W𝑣 ∈ R𝑑×𝑑 are trainable parameters. To avoid
overfitting and enable a more stable learning without vanishing or
exploding gradient issues, we include optional dropout layers and
layer normalization [3].

Three attentive representations can then be extracted from P̃𝑡 :

ẽ𝑅𝑡 , s̃𝑡 , h̃𝑡 = 𝑢𝑛𝑠𝑡𝑎𝑐𝑘 (P̃𝑡). (13)

We feed the attentive state representation s̃𝑡 to a fully connected
layer to compute the classification logits on the candidate actions.

[𝑦1, 𝑦2, ...𝑦𝑛] = 𝛿 (W𝑖 s̃𝑡 + b), (14)

where 𝛿 denotes the activation function and 𝑛 is the number of
candidate actions.W𝑖 ∈ R𝑛×𝑑 can be seen as another trainable item
embedding matrix and b ∈ R𝑛 is a bias vector.

Actor-Critic [24, 43] methods have achieved excellent results
in recent research. The key idea is to use the predicted Q-values
from the critic to re-weight the actor so that actions with higher
cumulative reward would have more effect in the training stage. In
PRL we re-weight the training samples with the immediate reward
𝑟𝑡 for amore stable training. Theweighted supervised cross-entropy
loss is defined as:

𝐿 = −𝑟𝑡
𝑛∑︁
𝑖=1

𝑌𝑖 log(𝑝𝑖),where 𝑝𝑖 =
𝑒𝑦𝑖∑𝑛

𝑖′=1 𝑒
𝑦𝑖′

. (15)

𝑌𝑖 is an indicator function which is defined as 𝑌𝑖 = 1 if the user
interacted with the 𝑖-th item in the next timestamp. Otherwise,
𝑌𝑖 = 0. Algorithm 2 shows a detailed training procedure of PRL.

3.2 PRL Inference
In training PRL, the cumulative reward can be computed from the
offline data. At inference time, however, we need to provide the
model with how much reward we want to obtain; the agent can
then adjust its actions conditioning on the prompted reward. For

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1351

an interaction step 𝑡 , a concise prompt reward can be set as the
average cumulative reward of the offline training data at this step.
To make the model more flexible, we extend the prompt reward for
PRL inference as:

�̃�𝑡 = N(𝜇, 𝜖2) × 𝑅𝑡 , (16)
where 𝑅𝑡 denotes the average cumulative reward of step 𝑡 in the
training data.N(𝜇, 𝜖2) is a Gaussian distribution with 𝜇 as the mean
and 𝜖 as the standard deviation. There are also various inference
reward settings (e.g., according to the maximum cumulative reward
in the training data). For offline inference and evaluation, we can
prompt the model with such expected reward at each timestamp.
Besides, for online inference, the proposed PRL can also support
sequence-wise recommendation generation through promoting
the model with the expected cumulative reward at the beginning
(i.e., the first timestamp) and then decreasing the obtained reward
according to the real user feedback. A more desired setting could
be that the prompt inference reward can be automatically adjusted
given the user state. We leave more advanced inference reward
settings for future work.

4 EXPERIMENTS
In this section, we perform experiments on two e-commerce datasets
to verify the effectiveness of the PRL learning paradigm. We aim to
answer the following research questions:

RQ1: How does PRL perform when instantiated with different
sequential recommendation models?

RQ2: What is the effect of the supervised attentive learning,
including the self-attentive block and the weighted loss function?

RQ3: How do the prompt reward settings in the inference stage
affect the PRL performance?

4.1 Experimental Settings
4.1.1 Datasets. Experiments are conducted on two public accessi-
ble datasets: Challenge154 and RetailRocket5.

Challenge15. This dataset comes from the RecSys Challange
2015. In it, each user–item interaction session contains a sequence
4https://recsys.acm.org/recsys15/challenge/
5https://www.kaggle.com/retailrocket/ecommerce-dataset

Algorithm 2 Overall Training procedure of PRL
Input: user-item interaction sequence set D𝑠 , reward settings
Output: all parameters in the learning space 𝜃
1: Initialize all trainable parameters
2: Generate D𝑝 according to Algorithm 1
3: repeat
4: Draw a mini-batch of {𝑅𝑡 ,𝑥1:𝑡 ,𝑡 },𝑥𝑡+1 from D𝑝

5: Compute P𝑡 according to Eq.(8)-Eq.(10)
6: Compute s̃𝑡 according to Eq.(12)-Eq.(13)
7: Compute loss function 𝐿 according to Eq.(14)-Eq.(15)
8: for each parameter 𝜗 ∈ 𝜃 do
9: Compute 𝜕𝐿/𝜕𝜗 on the mini-batch by back-propagation
10: Update 𝜗 ← 𝜗 − 𝜂 · 𝜕𝐿/𝜕𝜗
11: end for
12: until converge
13: return all parameters in 𝜃

Table 1: Dataset statistics.

Dataset Challenge15 RetailRocket

#sequences 200,000 195,523
#items 26,702 70,852
#clicks 1,110,965 1,176,680
#purchase 43,946 57,269

of user click or purchases behaviours. Sessions whose length are
shorter than 3 items or longer than 50 are removed. Then 200k ses-
sions are randomly sampled to obtain a dataset containing 1,110,965
clicks and 43,946 purchases upon 26,702 items.

RetailRocket. This dataset contains sequential data of user’s
behaviour in a e-commerce website; where users view and add
items to a shopping cart. For simplicity, we treat views as clicks
and adding to a cart as a purchase. Items which are interacted less
than 3 times are removed. Sequences whose length is shorter than
3 or longer than 50 items are also removed. The processed dataset
contains 1,176,680 clicks and 57,269 purchases over 70,852 items.
Table 1 presents these datasets’ detailed statistics.

4.1.2 Evaluation protocols. PRL implements offline training of a
RL-based recommendation agent. As a result, the experiments focus
is offline evaluation of the PRL agent. The ratio of training, valida-
tion, and test set is 8:1:1. We use the same data splits as [43]. For
validation and testing, the evaluation is performed by providing
the agent with previous user-item interaction sequences and the
generated prompt reward from Eq.(16). Then we check the rank of
the ground-truth action (i.e., interacted items) for the next step. The
ranking is performed among the whole item set. Each experiment
is repeated 3 times, and the average performance is reported.

For the main results, the recommendation performance is mea-
sured by hit ratio (HR) and normalized discounted cumulative gain
(NDCG). HR@𝑘 is a recall-based metric, measuring whether the
ground-truth action is in the top-𝑘 positions of the recommendation
list [43]. We can define HR for clicks as:

HR(click) = #hits among clicks
#clicks

(17)

HR(purchase) is then defined similarly to HR(click), except that
we replace numbers of clicks with purchases [43]. NDCG is a rank
weightedmetric which assigns higher scores to top ranked positions
in the recommendation list [21].

4.1.3 Baselines. We instantiate PRL with four renowned deep
learning-based sequential recommendation models, including RNN-
based models, CNN-based models, and attention-based models to
verify the generalization ability of the proposed PRL.
• GRU [14]: This method utilizes a GRU to model user–item
interactions. The hidden state of the final timestamp is re-
garded as the environment state, as shown in Eq. (8).
• Caser [40]: This is a CNN-based method which applies con-
volutions on the item embedding sequence. Caser is effective
at capturing skipping signals between interactions.
• NItNet [45]: This method uses a dilated CNN to enlarge
the receptive field to learn long sequences. Besides, residual

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1352

https://recsys.acm.org/recsys15/challenge/
https://www.kaggle.com/retailrocket/ecommerce-dataset

Table 2: Top-𝑘 recommendation performance comparison of different models (𝑘 = 5, 10, 20) on the Challenge15 dataset.
NG is short for NDCG. Boldface denotes the highest score. ∗ denotes the significance 𝑝-value < 0.1 compared with the
best baseline which is marked with . The values for normal training, SQN and SAC come from [43], since we use the
same data splits and hyperparameter settings.

Models purchase click

HR@5 NG@5 HR@10 NG@10 HR@20 NG@20 HR@5 NG@5 HR@10 NG@10 HR@20 NG@20

GRU 0.3994 0.2824 0.5183 0.3204 0.6067 0.3429 0.2876 0.1982 0.3793 0.2279 0.4581 0.2478
GRU-SQN 0.4228 0.3016 0.5333 0.3376 0.6233 0.3605 0.3020 0.2093 0.3946 0.2394 0.4741 0.2587
GRU-SAC 0.4394 0.3154 0.5525 0.3521 0.6378 0.3739 0.2863 0.1985 0.3764 0.2277 0.4541 0.2474
GRU-PRL 0.4514∗ 0.3214 0.5673∗ 0.3593 0.6525∗ 0.3809∗ 0.3027 0.2086 0.3967 0.2398 0.4755 0.2598
Caser 0.4475 0.3211 0.5559 0.3565 0.6393 0.3775 0.2728 0.1896 0.3593 0.2177 0.4371 0.2372
Caser-SQN 0.4553 0.3302 0.5637 0.3653 0.6417 0.3862 0.2742 0.1909 0.3613 0.2192 0.4381 0.2386
Caser-SAC 0.4866 0.3527 0.5914 0.3868 0.6689 0.4065 0.2726 0.1894 0.3580 0.2171 0.4340 0.2362
Caser-PRL 0.4938∗ 0.3555 0.6052∗ 0.3920∗ 0.6914∗ 0.4138∗ 0.3074∗ 0.2121∗ 0.4028∗ 0.2431∗ 0.4838∗ 0.2637∗

NItNet 0.3632 0.2547 0.4716 0.2900 0.5558 0.3114 0.2950 0.2030 0.3885 0.2332 0.4684 0.2535
NItNet-SQN 0.3845 0.2736 0.4945 0.3094 0.5766 0.3302 0.3091 0.2137 0.4037 0.2442 0.4835 0.2645
NItNet-SAC 0.3914 0.2813 0.4964 0.3155 0.5763 0.3357 0.2977 0.2055 0.3906 0.2357 0.4693 0.2557
NItNet-PRL 0.4295∗ 0.3098∗ 0.5405∗ 0.3460∗ 0.6351∗ 0.3701∗ 0.3280∗ 0.2273∗ 0.4248∗ 0.2588∗ 0.5028∗ 0.2786∗

SASRec 0.4228 0.2938 0.5418 0.3326 0.6329 0.3558 0.3187 0.2200 0.4164 0.2515 0.4974 0.2720
SASRec-SQN 0.4336 0.3067 0.5505 0.3435 0.6442 0.3674 0.3272 0.2263 0.4255 0.2580 0.5066 0.2786
SASRec-SAC 0.4540 0.3246 0.5701 0.3623 0.6576 0.3846 0.3130 0.2161 0.4114 0.2480 0.4945 0.2691
SASRec-PRL 0.4681∗ 0.3360∗ 0.5927∗ 0.3768∗ 0.6893∗ 0.4013∗ 0.3239 0.2246 0.4219 0.2565 0.5029 0.2770

Table 3: Top-𝑘 recommendation performance comparison of different models (𝑘 = 5, 10, 20) on the RetailRocket dataset.
NG is short for NDCG. Boldface denotes the highest score. ∗ denotes the significance 𝑝-value < 0.1 compared with the
best baseline which is marked with . The values for normal training, SQN and SAC come from [43], since we use the
same data splits and hyperparameter settings.

Models purchase click

HR@5 NG@5 HR@10 NG@10 HR@20 NG@20 HR@5 NG@5 HR@10 NG@10 HR@20 NG@20

GRU 0.4608 0.3834 0.5107 0.3995 0.5564 0.4111 0.2233 0.1735 0.2673 0.1878 0.3082 0.1981
GRU-SQN 0.5069 0.4130 0.5589 0.4289 0.5946 0.4392 0.2487 0.1939 0.2967 0.2094 0.3406 0.2205
GRU-SAC 0.4942 0.4179 0.5464 0.4341 0.5870 0.4428 0.2451 0.1924 0.2930 0.2074 0.3371 0.2186
GRU-PRL 0.5486∗ 0.4640∗ 0.5972∗ 0.4798∗ 0.6284∗ 0.4879∗ 0.2805∗ 0.2165∗ 0.3325∗ 0.2336∗ 0.3821∗ 0.2462∗

Caser 0.3491 0.2935 0.3857 0.3053 0.4198 0.3141 0.1966 0.1566 0.2302 0.1675 0.2628 0.1758
Caser-SQN 0.3674 0.3089 0.4050 0.3210 0.4409 0.3301 0.2089 0.1661 0.2454 0.1778 0.2803 0.1867
Caser-SAC 0.3871 0.3234 0.4336 0.3386 0.4763 0.3494 0.2206 0.1732 0.2617 0.1865 0.2999 0.1961
Caser-PRL 0.5277∗ 0.4403∗ 0.5742∗ 0.4554∗ 0.6124∗ 0.4653∗ 0.2770∗ 0.2158∗ 0.3296∗ 0.2328∗ 0.3774∗ 0.2450∗

NItNet 0.5630 0.4630 0.6127 0.4792 0.6477 0.4881 0.2495 0.1906 0.2990 0.2067 0.3419 0.2175
NItNet-SQN 0.5895 0.4860 0.6403 0.5026 0.6766 0.5118 0.2610 0.1982 0.3129 0.2150 0.3586 0.2266
NItNet-SAC 0.5895 0.4985 0.6358 0.5162 0.6657 0.5243 0.2529 0.1964 0.3010 0.2119 0.3458 0.2233
NItNet-PRL 0.5976∗ 0.5095∗ 0.6386 0.5229 0.6674 0.5302 0.2812∗ 0.2180∗ 0.3343∗ 0.2353∗ 0.3825∗ 0.2475∗

SASRec 0.5267 0.4298 0.5916 0.4510 0.6341 0.4618 0.2541 0.1931 0.3085 0.2107 0.3570 0.2230
SASRec-SQN 0.5681 0.4617 0.6203 0.4806 0.6619 0.4914 0.2761 0.2104 0.3302 0.2279 0.3803 0.2406
SASRec-SAC 0.5623 0.4679 0.6127 0.4844 0.6505 0.4940 0.2670 0.2056 0.3208 0.2230 0.3701 0.2355
SASRec-PRL 0.5612 0.4737∗ 0.6127 0.4905∗ 0.6564 0.5016∗ 0.2867∗ 0.2201∗ 0.3415∗ 0.2379∗ 0.3952∗ 0.2515∗

connections are introduced to increase the network depth.
NItNet achieves good performances with high efficiency.
• SASRec [22]: This baseline is attention-based and uses the
Transformer [41] decoder. The output of the Transformer is
treated as the state for the previous sequence.

Each model is trained with the following approaches:

• Normal: Train the model with the normal cross-entropy loss.
• SQN [43]: Self-supervised Q-learning is a recently proposed of-
fline RL learning method which combines supervised learning
with Q-learning through a shared base model.

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1353

Table 4: Effect of the self-attentive block. Boldface is the highest score. ∗ denotes 𝑝-value < 0.1 compared with PRL.

Methods purchase click

HR@5 NG@5 HR@10 NG@10 HR@20 NG@20 HR@5 NG@5 HR@10 NG@10 HR@20 NG@20

Challenge15
PRL-mean 0.4389∗ 0.3128∗ 0.5477∗ 0.3483∗ 0.6302∗ 0.3692∗ 0.2914∗ 0.2028∗ 0.3783∗ 0.2310∗ 0.4520∗ 0.2497∗
PRL-MLP 0.4481 0.3198 0.5618 0.3568 0.6504 0.3812 0.2840∗ 0.1962∗ 0.3761∗ 0.2261∗ 0.4584∗ 0.2469∗

PRL 0.4514 0.3214 0.5673 0.3593 0.6525 0.3809 0.3027 0.2086 0.3967 0.2398 0.4755 0.2598

RetailRocket
PRL-mean 0.5176∗ 0.4480∗ 0.5591∗ 0.4615∗ 0.5924∗ 0.4699∗ 0.2469∗ 0.1940∗ 0.2907∗ 0.2082∗ 0.3337∗ 0.2191∗
PRL-MLP 0.4890∗ 0.4090∗ 0.5373∗ 0.4247∗ 0.5817∗ 0.4360∗ 0.2439∗ 0.1899∗ 0.2912∗ 0.2052∗ 0.3362∗ 0.2166∗

PRL 0.5486 0.4640 0.5972 0.4798 0.6284 0.4879 0.2805 0.2165 0.3325 0.2336 0.3821 0.2462

• SAC [43]: Self-supervised actor-critic further extends SQN by
using the Q-learning part as a critic to re-weight the supervised
learning-based actor.
• PRL: Our proposed method.

4.1.4 Parameter settings. On our experiments using both datasets,
we limit the model’s input to only use the last 10 interacted items
at a time, i.e. using only 𝑥𝑡−10:𝑡 as our model’s input. For sequences
whose lengths are less than 10, we pad these sequences with a
padding token. The Adam optimizer [23] is used to train all models,
with batches of size 256. The learning rate is set as 0.01 for RC15 and
0.005 for RetailRocket. For a fair comparison, the item embedding
size is set as 64 for all models and all training methods. For GRU, the
size of the hidden state is set as 64. For Caser, we use 1 vertical con-
volution filter and 16 horizontal filters whose heights are set from
{2,3,4} according to the original paper [40]. For NextItNet, we use
the code published by its authors and keep the settings unchanged.
For SASRec, the number of heads in self-attention is set to 1, fol-
lowing the original paper [22]. The drop-out ratio is tuned among
[0,0.1,0.2,0.3,0.4,0.5] since we observed that continuing increasing
the drop ratio would affect the model performance. For SQN and
SAC, we use the exact same setting with their original paper [43].
For PRL, the prompt’s reward setting used at inference time is set
as 𝜇 = 2 and 𝜖 = 0. The reward for purchases is set as 𝑟𝑝 = 1.0 and
the reward for clicks is set as 𝑟𝑐 = 0.2. Note that the hyperparame-
ters of recommendation models are kept exactly the same across
all training approaches for a fair comparison. Further, by keeping
PRL’s hyperparameters constant across our experiments, we show
that it can be instantiated with different models without exhaustive
hyperparameter refinement.

4.2 Performance Comparison (RQ1)
Tables 2 and 3 show a comparison of the top-𝑘 recommendation
performances on Challenge15 and RetailRocket, respectively. The
values for normal training, SQN and SAC come from [43], since we
use the same data splits and hyperparameter settings.

We observe that on the Challenge15 dataset, the proposed PRL
method achieves the best performance in almost all cases except
for the click prediction when integrating with the SASRec model,
in which case SQN achieves the highest scores. However the per-
formance gap between SASRec-SQN and SASRec-PRL for click
prediction is very small and both of the two methods over-perform
normal training. The reason of similar click prediction performance

between SASRec-SQN and SASRec-PRL could be that the self-
attention based SASRec itself is a powerful base model and the
candidate item set in the Challenge15 dataset (i.e., 26,702) is rela-
tively small, so both PRL and SQN have been pushed to the similar
almost optimal performance. However, we can see that for purchase
predictions, SASRec-PRL still achieves significant performance im-
provement. It demonstrates that PRL effectively improves the offline
training performance of RL-based recommender systems.

On the RetailRocket dataset, we can see that PRL also achieves
the highest scores in almost all situations. PRL achieves the highest
NDCG in all cases. This demonstrates that PRL tends to push the
items which have a higher purchase reward to the top ranking
positions of the recommendation list. The biggest performance
improvement on RetailRocket is achieved when PRL is instantiated
with the Caser model. This further verifies the effectiveness and
the generalization ability of PRL.

To conclude, PRL consistently and significantly improves the
offline learning performance for RL-based recommendation tasks
and can be applied for various sequential recommendation models.

4.3 Ablation Study (RQ2)
4.3.1 Effect of the self-attentive block. PRL uses a self-attentive
block to map a prompt to a corresponding action. In this section,
we conduct experiments to verify the effect of this block. We replace
the self-attentive block with mean-pooling (i.e., PRL-mean) or a
multi-layer perceptron (MLP) (i.e.,PRL-MLP). Table 4 shows the
performance comparison when using GRU as the base sequential
model. Results of other models lead to the same conclusion. We
can see that PRL with the self-attentive block achieves the best
performance with significant improvement. This demonstrates the
effectiveness of the self-attentive block. Besides, comparing the
results with Table 2 and Table 3, we can see that PRL-mean and
PRL-MLP achieve better performance than the naive GRU. It further
demonstrates the involvement of reward prompt-based learning is
effective to improve the recommendation performance.

4.3.2 Effect of the weighted loss. PRL uses the immediate reward
𝑟𝑡 to re-weight the supervised training loss so that actions with
higher reward would account for larger weights. In this subsection,
we conduct experiments to illustrate the effect of this re-weighting
schema. We compare the results of PRL without any re-weighting
(i.e., PRL-w/o) and PRL re-weighted by the cumulative reward (i.e.,
PRL-cumu). Table 5 shows the performance comparison when us-
ing GRU as the base sequential model. We can see that on the

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1354

Table 5: Effect of the weighted loss. PRL-w/o denotes training the agent with PRL but without any re-weighting. PRL-cumu
means using the cumulative reward to re-weight the loss. ∗ denotes 𝑝-value < 0.1 compared with PRL.

Methods purchase click

HR@5 NG@5 HR@10 NG@10 HR@20 NG@20 HR@5 NG@5 HR@10 NG@10 HR@20 NG@20

Challenge15
PRL-w/o 0.4143∗ 0.2905∗ 0.5227∗ 0.3259∗ 0.6141∗ 0.3491∗ 0.3135∗ 0.2166∗ 0.4080∗ 0.2473∗ 0.4889∗ 0.2678∗

PRL-cumu 0.4026∗ 0.2769∗ 0.5051∗ 0.3103∗ 0.5955∗ 0.3332∗ 0.2887∗ 0.1984∗ 0.3792∗ 0.2278∗ 0.4551∗ 0.2471∗
PRL 0.4514 0.3214 0.5673 0.3593 0.6525 0.3809 0.3027 0.2086 0.3967 0.2398 0.4755 0.2598

RetailRocket
PRL-w/o 0.5193∗ 0.4267∗ 0.5717∗ 0.4438∗ 0.6154∗ 0.4548∗ 0.2780 0.2139 0.3350 0.2324 0.3841 0.2448
PRL-cumu 0.4951∗ 0.4017∗ 0.5555∗ 0.4214∗ 0.5954∗ 0.4316∗ 0.2596∗ 0.1964∗ 0.3130∗ 0.2137∗ 0.3611∗ 0.2259∗

PRL 0.5486 0.4640 0.5972 0.4798 0.6284 0.4879 0.2805 0.2165 0.3325 0.2336 0.3821 0.2462

Challenge15 dataset, PRL-w/o achieves the highest scores for click
prediction while PRL achieves the best purchase prediction. On
RetailRocket, PRL-w/o and PRL have similar performance for click
prediction but PRL performs better for purchase prediction. The
results demonstrate that the re-weighting schema of PRL success-
fully helps the model to recommend more purchased items with
higher immediate reward. Regarding PRL-cumu, we can see that its
performance is worse than PRL-w/o and PRL. The reason could be
that the cumulative reward has much higher variance. So directly
using the cumulative reward to re-weight the loss cannot boost the
agent performance. Besides, comparing these results to Tables 2 and
3, we can see that even PRL-w/o achieves better recommendation
performance than the naive GRU. This further demonstrate the
effectiveness of the proposed prompt-based learning.

4.4 Prompt Reward Investigation (RQ3)
In this subsection, we conduct experiments to see how the infer-
ence reward settings affect the model performance. We report the
cumulative reward@1 in the test set, which measures how much
cumulative reward we can get from the top-1 position of our recom-
mendation list. Figure 4a and Figure 4b show the effect of reward
expectation 𝜇 on Challenge15 and RetailRocket, respectively. We
can see that on the Challenge15 dataset, the cumulative reward in-
creases at beginning and then decreases. While on the RetailRocket
dataset, the cumulative reward keeps decreasingwith higher reward
expectations. This demonstrates that a larger reward expectation
sometimes improves the inference performance, but a reward ex-
pectation too large can be harmful. Figures 5a and 5b illustrate the
effect of the reward deviation 𝜖 , which can be seen as an explo-
ration factor. We can see that on Challenge15, a large 𝜖 reduces
the recommendation performance. While on RetailRocket, a larger
𝜖 can slightly improve the inference performance. Combined, the
results of Figures 4 and 5 suggest that Challenge15’s users may
prefer items with high reward expectation and little exploration.
On the other hand, RetailRocket’s users may tend to prefer more
exploration.

5 RELATEDWORK
Markov Chain (MC) models [13, 26, 33] and factorization-based
methods [15, 32] were widely used for next item recommendation
tasks in the past. However, such shallow models cannot effectively

(a) Challenge15. (b) RetailRocket.

Figure 4: Effect of the inference reward expectation 𝜇.

(a) Challenge15. (b) RetailRocket.

Figure 5: Effect of the inference reward deviation 𝜖.

capture complex sequential signals [40, 45]. Recently, deep learning-
based sequential models have been widely investigated for next
item recommendation. [14] proposed to model user previous inter-
actions by GRU. [40] and [45] are based on CNNs. Besides, [22, 39]
exploited self-attention and Transformer-based architectures [41].
Generally speaking, all we need is a model 𝐺 (described in section
2.1), whose input is a sequence of previous user–item interactions,
while the output is a hidden state s that describes the user’s state.
The proposed PRL thus serves as a general learning paradigm, and
its model 𝐺 can be instantiated with any of a diverse pool of se-
quential models.

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1355

RL has been previously applied for recommendation. To per-
form offline learning from historical data, existing works mainly
focus on using IPS score [7] and model-based simulation [8, 16, 47].
Besides, [43] proposed self-supervised reinforcement learning for
recommendation; given a standard supervised generative sequential
model, they introduce an additional output layer which is trained
with standard Q-learning to bias the model towards the desired re-
ward expectation. Furthermore, offline RL algorithms are attracting
more and more research efforts. [10] proposed batch constrained
Q-learning, forcing the agent to generate in-distribution actions.
[27] proposed conservative Q-learning to avoid the over-estimation
of Q-values. [34, 37] proposed upside-down RL to transform RL
into a form of supervised learning. Recently, [6, 20] proposed to use
Transformers to model the RL problem as a big sequence modeling
task. While similar to our proposed prompt-inspired methodology,
these methods were not tailored to perform next item recommen-
dation, and could encounter difficulties if applied to a setting with
highly dynamic user states [25] and a large action space [19].

6 CONCLUSION AND FUTUREWORK
We propose prompt-based reinforcement learning for the offline
training of RL-based next item recommendation agents. We theo-
retically analyse the offline training challenge when exploiting RL
for recommendation. Then we propose to use the historical offline
data as a knowledge base and then formulate the recommendation
task as a question of which action should be taken if the prompt
reward is expected to be achieved under the state observation. The
proposed PRL can be trained through a simple supervised fashion.
We implement PRL with four renowned sequential recommenda-
tion models and conduct experiments on two real-world datasets.
Experimental results demonstrate the effectiveness of our proposed
method. Future work includes online tests and more advanced
prompt generation. Besides, we are also interested in investigating
adaptive prompt reward settings for model inference.

ACKNOWLEDGMENTS
This work is supported by the National Key R&D Program of
China (2020YFB1406704), the Natural Science Foundation of China
(61902219, 61972234, 62072279, 62102234), the Key Scientific and
Technological Innovation Program of Shandong Province with
grant No.2019JZZY010129, the Natural Science Foundation of Shan-
dong Province (ZR2021QF129), the Tencent WeChat Rhino-Bird
Focused Research Program (JR-WXG-2021411), the Fundamental
Research Funds of Shandong University, the Shandong University
multidisciplinary research and innovation team of young scholars
(2020QNQT017), and Meituan. All content represents the opinion
of the authors, which is not necessarily shared or endorsed by their
respective employers and/or sponsors.

REFERENCES
[1] M Mehdi Afsar, Trafford Crump, and Behrouz Far. 2021. Reinforcement learning

based recommender systems: A survey. arXiv preprint arXiv:2101.06286.
[2] Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. 2017. Gener-

alization and equilibrium in generative adversarial nets (gans). In International
Conference on Machine Learning. PMLR, 224–232.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-
tion. arXiv preprint arXiv:1607.06450.

[4] Richard Bellman. 1966. Dynamic programming. Science 153, 3731, 34–37.

[5] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan
He. 2020. Bias and debias in recommender system: A survey and future directions.
arXiv preprint arXiv:2010.03240.

[6] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael
Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. 2021. Decision
transformer: Reinforcement learning via sequence modeling. In Advances in
Neural Information Processing Systems.

[7] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and
Ed H Chi. 2019. Top-k off-policy correction for a REINFORCE recommender
system. In Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining. ACM, 456–464.

[8] Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan Qi, and Le Song. 2019.
Generative Adversarial User Model for Reinforcement Learning Based Recom-
mendation System. In International Conference on Machine Learning. 1052–1061.

[9] Xiaocong Chen, Lina Yao, Julian McAuley, Guanglin Zhou, and Xianzhi Wang.
2021. A survey of deep reinforcement learning in recommender systems: A
systematic review and future directions. arXiv preprint arXiv:2109.03540.

[10] Scott Fujimoto, David Meger, and Doina Precup. 2019. Off-policy deep reinforce-
ment learning without exploration. In Proceedings of the 36th International Con-
ference on Machine Learning (Proceedings of Machine Learning Research, Vol. 97).
PMLR, 2052–2062.

[11] Hado V Hasselt. 2010. Double Q-learning. In Advances in Neural Information
Processing Systems. 2613–2621.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[13] Ruining He and Julian McAuley. 2016. Fusing similarity models with markov
chains for sparse sequential recommendation. In 2016 IEEE 16th International
Conference on Data Mining. IEEE, 191–200.

[14] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based recommendations with recurrent neural networks. In 4th
International Conference on Learning Representations.

[15] Balázs Hidasi and Domonkos Tikk. 2016. General factorization framework for
context-aware recommendations. Data Mining and Knowledge Discovery 30, 2,
342–371.

[16] Jonathan Ho and Stefano Ermon. 2016. Generative adversarial imitation learning.
In Advances in neural information processing systems. 4565–4573.

[17] Yujing Hu, Qing Da, Anxiang Zeng, Yang Yu, and Yinghui Xu. 2018. Reinforce-
ment learning to rank in e-commerce search engine: Formalization, analysis, and
application. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 368–377.

[18] Jin Huang, Harrie Oosterhuis, Maarten de Rijke, and Herke van Hoof. 2020.
Keeping dataset biases out of the simulation: A debiased simulator for reinforce-
ment learning based recommender systems. In Fourteenth ACM Conference on
Recommender Systems. 190–199.

[19] Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu,
Heng-Tze Cheng, Tushar Chandra, and Craig Boutilier. 2019. SlateQ: A tractable
decomposition for reinforcement learning with recommendation sets. In Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial Intelligence.
ijcai.org, 2592–2599.

[20] Michael Janner, Qiyang Li, and Sergey Levine. 2021. Offline Reinforcement Learn-
ing as One Big Sequence Modeling Problem. In Advances in Neural Information
Processing Systems.

[21] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems 20, 4, 422–446.

[22] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE International Conference on Data Mining. IEEE, 197–206.

[23] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In 3rd International Conference on Learning Representations, 2015.

[24] Vijay R Konda and John N Tsitsiklis. 2000. Actor-critic algorithms. In Advances
in neural information processing systems. 1008–1014.

[25] Yehuda Koren. 2009. Collaborative filtering with temporal dynamics. In Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining. 447–456.

[26] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8, 30–37.

[27] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. 2020. Conserva-
tive q-learning for offline reinforcement learning. In Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020.

[28] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Gra-
ham Neubig. 2021. Pre-train, prompt, and predict: A systematic survey of prompt-
ing methods in natural language processing. arXiv preprint arXiv:2107.13586.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540, 529.

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1356

[30] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. 2016. Safe
and efficient off-policy reinforcement learning. In Advances in Neural Information
Processing Systems. 1054–1062.

[31] Emilio Parisotto, H Francis Song, Jack W Rae, Razvan Pascanu, Caglar Gulcehre,
Siddhant M Jayakumar, Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark,
Seb Noury, et al. 2020. Stabilizing Transformers for Reinforcement Learning.
In Proceedings of the 37th International Conference on Machine Learning,2020
(Proceedings of Machine Learning Research, Vol. 119). PMLR, 7487–7498.

[32] Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International Confer-
ence on Data Mining. IEEE, 995–1000.

[33] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalizedmarkov chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide web. ACM, 811–820.

[34] Juergen Schmidhuber. 2019. Reinforcement Learning Upside Down: Don’t Predict
Rewards–Just Map Them to Actions. arXiv preprint arXiv:1912.02875.

[35] Guy Shani, David Heckerman, and Ronen I Brafman. 2005. An MDP-based
recommender system. Journal of Machine Learning Research 6, Sep, 1265–1295.

[36] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. Nature 529, 7587, 484.

[37] Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, and
Jürgen Schmidhuber. 2019. Training agents using upside-down reinforcement
learning. In NeurIPS Deep Reinforcement Learning Workshop.

[38] Dusan Stamenkovic, Alexandros Karatzoglou, Ioannis Arapakis, Xin Xin, and
Kleomenis Katevas. 2021. Choosing the Best of Both Worlds: Diverse and Novel
Recommendations through Multi-Objective Reinforcement Learning. In Proceed-
ings of the 15th ACM International Conference on Web Search and Data Mining.

[39] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM international

conference on information and knowledge management. 1441–1450.
[40] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommenda-

tion via convolutional sequence embedding. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining. ACM, 565–573.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[42] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3-4, 229–256.

[43] Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis, and Joemon M Jose. 2020.
Self-supervised reinforcement learning for recommender systems. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 931–940.

[44] Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis, and Joemon M Jose. 2021.
Supervised Advantage Actor-Critic for Recommender Systems. In Proceedings of
the 15th ACM International Conference on Web Search and Data Mining.

[45] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and Xi-
angnan He. 2019. A Simple Convolutional Generative Network for Next Item
Recommendation. In Proceedings of the Twelfth ACM International Conference on
Web Search and Data Mining. ACM, 582–590.

[46] Xiangyu Zhao, Long Xia, Jiliang Tang, and Dawei Yin. 2019. " Deep reinforce-
ment learning for search, recommendation, and online advertising: a survey"
by Xiangyu Zhao, Long Xia, Jiliang Tang, and Dawei Yin with Martin Vesely as
coordinator. ACM SIGWEB Newsletter Spring, 1–15.

[47] Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin.
2019. Reinforcement Learning to Optimize Long-term User Engagement in
Recommender Systems. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, 2810–2818.

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1357

	Abstract
	1 Introduction
	2 Challenge Investigation
	2.1 Next Item Recommendation
	2.2 Reinforcement Learning and the Challenge
	2.3 Prompt and Knowledge Base

	3 Methodology
	3.1 PRL Training
	3.2 PRL Inference

	4 Experiments
	4.1 Experimental Settings
	4.2 Performance Comparison (RQ1)
	4.3 Ablation Study (RQ2)
	4.4 Prompt Reward Investigation (RQ3)

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

