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In e-commerce portals, generating answers for product-related questions has become a crucial task. In this paper, we focus on the task
of product-aware answer generation, which learns to generate an accurate and complete answer from large-scale unlabeled e-commerce
reviews and product attributes.

However, safe answer problems (i.e., neural models tend to generate meaningless and universal answers) pose significant challenges
to text generation tasks, and e-commerce question-answering task is no exception. To generate more meaningful answers, in this paper,
we propose a novel generative neural model, called the Meaningful Product Answer Generator (MPAG), which alleviates the safe answer
problem by taking product reviews, product attributes, and a prototype answer into consideration. Product reviews and product
attributes are used to provide meaningful content, while the prototype answer can yield a more diverse answer pattern. To this end,
we propose a novel answer generator with a review reasoning module and a prototype answer reader. Our key idea is to obtain the
correct question-aware information from a large scale collection of reviews and learn how to write a coherent and meaningful answer
from an existing prototype answer. To be more specific, we propose a read-and-write memory consisting of selective writing units
to conduct reasoning among these reviews. We then employ a prototype reader consisting of comprehensive matching to extract the
answer skeleton from the prototype answer. Finally, we propose an answer editor to generate the final answer by taking the question
and the above parts as input. Conducted on a real-world dataset collected from an e-commerce platform, extensive experimental
results show that our model achieves state-of-the-art performance in terms of both automatic metrics and human evaluations. Human

evaluation also demonstrates that our model can consistently generate specific and proper answers.
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Fig. 1. Example of giving an answer for product related question by sourcing from custom reviews and product attributes.

1 INTRODUCTION

In recent years, the explosive popularity of question-answering (QA) is revitalizing the task of reading comprehension
with promising results [57, 73]. Unlike traditional knowledge-based QA methods that require a structured knowledge
graph as the input and output resource description framework (RDF) triples [32], most of the reading comprehension
approaches read context passages and extract text spans from input text as answers [55, 73].

E-commerce is playing an increasingly important role in our daily life. As a convenience of users, more and more
e-commerce portals provide community question-answering services that allow users to pose product-aware questions
to other consumers who purchased the same product before. Unfortunately, many product-aware questions lack proper
answers. Under the circumstances, users have to read the product’s reviews to find the answer by themselves. Given

product attributes and reviews, an answer is manually generated following a cascade procedure:

(1) A user skims reviews and finds relevant sentences;
(2) She/he extracts useful semantic units;

(3) The user jointly combines these semantic units with attributes, and writes a proper answer.

However, the information overload phenomenon makes this procedure an energy-draining process to pursue an answer
from a rapidly increasing number of reviews. Consequently, automatic product-aware question-answering has become
more and more helpful in this scenario. In this paper, the task on which we focus is the product-aware answer generation.
Our goal is to respond product-aware questions automatically given a large number of reviews and attributes of a
specific product. Figure 1 shows an example of product-aware answer generation task. Unlike either a “yes/no” binary
classification task [42] or a review ranking task [45], product-aware answer generation provides a natural-sounding
sentence as an answer.

The definition of our task is similar to the reading comprehension [51, 82] which reads some paragraphs and then
answers the question by extracting text spans as the response. The knowledge source of the reading comprehension task

always comes from formal documents, like news articles and Wikipedia. However, product reviews from e-commerce
Manuscript submitted to ACM
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Fig. 2. Illustration the data flow of two product-related question answering model. The PAAG model (left) only use the question,
product attributes and custom reviews as input. To overcome the safe answer problem, MAPG (right) incorporates the retrieved
prototype question and answer pair additionally, which can give a natural answer pattern and boost the performance of answer
generation.

websites are informal and noisy, whereas in reading comprehension the given context passages are usually in a formal
style. Generally, using existing reading comprehension approaches to tackle the product-aware answer generation

confronts three challenges:

(1) Some of the review texts are irrelevant and noisys;
(2) It’s extremely expensive to label large amounts of explicit text spans from real-world e-commerce platforms;
(3) Traditional loss function calculation in reading comprehension tends to generate meaningless answers such as “I

don’t know”.

To overcome these drawbacks, we propose the product-aware answer generator (PAAG) in our early work [23], a
product related question answering model which incorporates customer reviews with product attributes. Specifically, at
the beginning, we employ an attention mechanism to model interactions between a question and reviews. Simultaneously,
we employ a key-value memory network to store the product attributes and extract the relevance values according to
the question. Eventually, we propose a recurrent neural network (RNN) based decoder, which combines product-aware
review representation and attributes to generate the answer. More importantly, to tackle the problem of meaningless
answers, we propose an adversarial learning mechanism for optimizing parameters. To demonstrate the effectiveness of
our proposed model, we collect a large-scale e-commerce question answering dataset from one of the largest online
shopping websites JD.com. Experimental results conducted on our proposed dataset demonstrate that the PAAG model
achieves significant improvement over other baselines, including the state-of-the-art reading comprehension model.
Our experiments verify that adversarial learning is capable to significantly improve the denoising and facts extracting
capacity of PAAG.

Although using adversarial learning techniques can reduce the probability of generating safe answers to a certain
extent, the model still has a high probability of generating safe answers since the model lacks answer patterns that
can be referenced. This is known as the safe answer problem, which is a commonly-faced problem in text generation
tasks [39, 77]. Moreover, to answer some complex questions, the QA system needs the reasoning ability that could make
inference from the product reviews.

Motivated by this observation, in this work, we take one step further and improve our previously proposed PAAG
framework that addresses the safe answer problem in e-commerce question-answering. To be more specific, we solve
the problem by introducing a large-scale collection of reviews and a prototype question-answer pair and employing the
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memory network to incorporate the reasoning result into the answer generation process. Existing works [9, 24] only
employ a limited number of reviews (less than 10) and are thus inclined to generate a biased and inaccurate answer.
To avoid this, we target at learning accurate and appropriate content information from massive amounts of product
reviews and product attributes. However, discovering and utilizing information from large quantities of reviews is
highly challenging. Sometimes the answer generation model needs to do reasoning among the reviews to obtain the
final facts that are necessary for generation answers. Then, to learn a more diverse and interesting answer pattern, the
prototype answer can be of great help. The prototype answer gives a natural language pattern of a similar question,
and it can be referred by the answer generation model. In fact, existing approaches [29, 76] in the dialog generation
field have proven the usefulness of incorporating prototype response for improving performance, which retrieves a
prototype text and then post-edit it as the final dialog response. Nevertheless, combining prototype text and reasoning
results with the question-answering task has yet to be explored.

In this paper, we propose a novel answer generation model, named Meaningful Product Answer Generator (MPAG),
for e-commerce question answering. Figure 2 illustrates the framework of MPAG, which takes the question and three
additional information sources as input: product reviews, product attributes, and a prototype question with an answer.
First, for product reviews, MPAG uses a simple but efficient clustering method, K-means, to aggregate similar reviews
to the same cluster, so as to better utilize review information. Then, we employ Convolutional Neural Network (CNN)
to encode these reviews. To reason about these reviews, we propose a write-read memory architecture that selectively
writes review information to the memory, and then reads out corresponding information related to the question. Next,
MPAG employs a key-value memory network to encode product attributes. To tackle the safe answer problem, we
retrieve a prototype answer from the dataset and employ a prototype reader to learn the answer skeleton. Specifically,
we use the question to retrieve the most similar question from the dataset as the prototype question and use the answer
to this prototype question as prototype answer. Finally, we propose an answer editor to incorporate the answer skeleton
with the reasoning result and product attributes, and then generate the new answer. Experiments conducted on a public
large-scale benchmark dataset demonstrate that MPAG achieves significant improvement over the state-of-the-art
baselines. Experiments also verify the effectiveness of each module in MPAG as well as its explanation ability.

This work is a substantial extension of our previous work reported at WSDM 2019 [24]. The extension in this article
includes a novel memory network and a prototype editing-based answer generator, a proposal of a new framework for
answering the product-related questions in e-commerce portals which can generate more meaningful answers than the

previous method. Specifically, the contributions of this work include the following:

We come up with a meaningful answer generator model in the e-commerce question-answering task.

We propose a review reasoning module to reason about a large number of reviews.

We employ a prototype editing based answer generator to generate answers by revising a given prototype answer

and incorporating the reasoning results.

Experiments conducted on a public large-scale benchmark dataset show that our model outperforms all baselines,
including state-of-the-art models. Experiments also verify the effectiveness of each module in MPAG, as well as

its interpretability in answer generation.

The rest of the paper is organized as follows: We introduce related work in § 2. We formulate our research problem
in § 3. We introduce our extended method which incorporates answer prototype and a novel memory network in § 4.

Then, § 5 details our experimental setup and § 6 presents the experimental results. Finally, § 7 concludes the paper.
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2 RELATED WORK

In this section, we detail related work on product-aware question-answering, reasoning in question-answering, reading

comprehension, text generation methods and prototype editing, respectively.

2.1 Product-aware Question-answering

Studies on product reviews include [34, 70, 75]. It is a long-standing issue in information retrieval. Most of the existing
strategies for product-aware question-answering aim at extracting relevant sentences from input reviews to answer the
given question [42, 83, 84]. For example, Yu et al. [83] proposed an opinion-based question-answering framework, which
organizes reviews into a hierarchical structure and retrieves a review sentence as the answer. With the development of
knowledge graphs, reviews have been considered as external knowledge [42] to predict the answer. However, it can
only return simple answers, such as “yes” or “no”. Unfortunately, more often than not there is no proper review that
can be used as an answer. Gupta et al. [28] proposed a review-based question answering dataset. However, with this
dataset, a high BLEU score (with a 78.56 BLEU-1 score) can be achieved by just randomly selecting a review as the
answer. Thus, it is not suitable for generative question answering tasks, which have gained particular interest in recent
years due to the emergence of neural networks. For example, Gao et al. [24] proposed an adversarial learning-based
model which combines product attributes and review information to generate an answer for a given question. Chen
et al. [9] proposed a convolutional text generation model which uses review snippets to guide the decoding attention.
However, these generation-based approaches are not sufficiently robust against the safe answer problem, and they also

lack reasoning ability.

2.2 Reasoning in Question-answering

Question-answering has long been a task used to assess a model’s ability to understand and reason about language. Large
scale datasets such SQUAD [52] have encouraged the development of many advanced, high performing attention-based
neural models. The ability of reasoning is an important research ingredient in question-answering [59, 65, 74]. Weston
et al. [74] released a dataset, named bADb], to specifically focus on multi-step reasoning by requiring models to reason
using disjoint pieces of information. For this task, iteratively updating the query representation with context information
has also been shown to effectively emulate multi-step reasoning. Kumar et al. [35] proposed a dynamic memory network
where questions trigger an iterative attention process to condition the model’s attention on inputs and the result of
previous iterations. Xiong et al. [78] proposed several improvements to memory and input modules and apply them to
visual question-answering. Instead of extractive fact-finding QA, Bauer et al. [4] focused on a multi-hop generative task,
which requires the model to reason, gather, and synthesize disjoint pieces of information within the context to generate
an answer. Apart from multi-hop based reasoning, reasoning with a memory write-read mechanism has also been
considered [12, 26, 37, 68]. For instance, Graves et al. [26] proposed a machine learning model, namely differentiable
neural computer, which consists of a neural network that can read from and write to an external memory matrix,
analogous to the random-access memory in a conventional computer. Subsequently, Le et al. [37] proposed a modified

version aiming to balance between maximizing memorization and forgetting via overwriting mechanisms.

Inspired by the above solutions, we also apply the write-read mechanism in this paper. In contrast with DNC, we come

up with a novel reasoning module, which is simpler and more efficient for e-commerce question-answering.
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2.3 Reading Comprehension

Given a question and relevant passages, reading comprehension extracts a text span from passages as an answer [51].
Recently, based on a widely applied dataset, i.e., SQUAD [51], many approaches have been proposed [7, 14, 33, 43, 60].
Seo et al. [55] use bi-directional attention flow mechanism to obtain a query-aware passage representation. Wang
et al. [73] propose a model to match the question with passage using gated attention-based recurrent networks to
obtain the question-aware passage representation. Consisting exclusively of convolution and self-attention, QANet [82]
achieves the state-of-the-art performance in reading comprehension. Cui et al. [13] place another attention mechanism
over the document-level attention and induces “attended attention” for final answer predictions. As mentioned above,
most of the effective methods contain question-aware passage representation for generating a better answer. This
mechanism makes the models focus on the important part of passage according to the question. Following these

previous studies, our method models the reviews of product with a question aware mechanism.

2.4 Text Generation Methods

In recent years, sequence-to-sequence (seq2seq) [61] based neural networks have been proved effective in generating a
fluent sentence. The seq2seq model is originally proposed for machine translation and later adapted to various natural
language generation tasks, such as text summarization [10, 18, 19, 22, 25, 41, 48, 69, 71] and dialogue generation [6, 17,
20, 21, 40, 50, 64, 81, 85, 86]. Rush et al. [53] apply the seq2seq mechanism with attention model to text summarization
field. Then See et al. [54] add copy mechanism and coverage loss to generate summarization without out-of-vocabulary
and redundancy words. Tao et al. [63] propose a multi-head attention mechanism to capture multiple semantic aspects
of the query and generate a more informative response. Yao et al. [81] propose to use the content introducing method to
solve the problem of generating meaningless response. Wang et al. [72] use three channels for widening and deepening
the topics of interest and try to make the conversational model chat more turns.

Different from vanilla seq2seq models, our model utilizes not only the information in input sequence but also much
external knowledge from user reviews and product attributes to generate the answer that matches the facts. Similar to
our e-commerce question answering task, several tasks input data in key-value structure instead of a sequence. In order
to utilize these data when generating text, key-value memory network (KVMN) [2, 79] is purposed to store this type of
data. He et al. [32] incorporate copying and retrieving knowledge from knowledge base stored in KVMN to generate
natural answers within an encoder-decoder framework. In detail, they retrieve some relative facts and store them in a
KVMN fashion, then use an attention mechanism to attend the facts and fuse them into context vector. Tu et al. [66]
use a KVMN to store the translation history which gives model the opportunity to take advantage of document-level
information instead of translate sentences in an isolation way. In view of the superior performance of storing structure

data in neural models, we employ the key-value memory network in our model to store the attributes data of product.

2.5 Prototype Editing

The safe answer problem has been widely explored in recent years [30, 38, 49]. Among these methods that aim at solving
this challenge, prototype editing has proven one of the most effective. Guu et al. [29] were the first to propose the
prototype editing model, where a prototype sentence is sampled from the training data and edited into a new sentence.
Subsequently, Wu et al. [76] proposed a new paradigm for response generation, which first retrieves a prototype
response from a pre-defined index and then edits it according to the differences between the prototype context and
current context. Different from this soft attention method, Cai et al. [5] proposed a hard-editing skeleton-based model to
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Table 1. Glossary.

Symbol  Description

X1 a question sentence

X" a set of reviews sentences

A a set of product attribute key-value pairs
a’t‘, a; the t-th attribute key and value in A
Y,Y,Y ground truth answer, generated answer, prototype answer
Xyt t-th word in n-th review

x?, U:,§r t-th word in corresponding sentence

N number of reviews in a cluster

K number of clusters

Cr k-th review cluster

jad length of n-th review

Ty, number of attributes

Tq, Ty length of corresponding word sequence

promote the coherence of the generated stories. Specifically, a skeleton is generated by revising the retrieved responses;
then, a generative model uses both the generated skeleton and the original query to generate a response. Cao et al. [8]
applied this prototype editing method to the task of summarization, where they employed existing summaries as soft
templates to generate a summary.

While previous prototype-based methods have achieved much success in various areas, none have incorporated
reviews or product attributes into their generation, limiting their ability to produce appropriate and accurate answers.
Thus, our proposed method is the first attempt to apply the prototype editing method to question-answering, taking
advantage of reasoning results and product attributes to generate an answer. The differences of technical design between
our model and previous prototype-based methods lie in that these methods directly use the attention mechanism [8, 76]
to obtain the edit vector, which ignore the relationships between the prototype answer and prototype question. And
this relationship can help our model to identify which part in the prototype has a low correlation with the prototype

question, and that part will be used as the answer prototype.

3 PROBLEM FORMULATION

Before detailing our answer generation model, we first introduce our notations listed in Table 1.

For a product, there is a question X9 = {x;], xzq, .. ,,x;{q }, along with reviews X" = {x;,xg, .. .,x% }, where T;
represents the number of reviews, x? is the t-th word in question and answer and x} is the t-th review. We assume
there exist T, key-value pairs of product attributes A = {(a]f, al), (alg, ag),..., (a’%a, a%z)}, where a{.‘ is the name of i-th
attribute and a? is the attribute content. Both key a{.‘ and value a? include one word. Since our newly proposed model
is a prototype-based method, a prototype question X9 = {9?? J%Z, . .,92%1} and prototype answer Y = {{j1, 7z, ..., gr, }
where Ty and Ty is the number of words in prototype question and answer, is also attached. The goal of our task is to
generate an answer Y that is in accordance with product attributes A and information mentioned in reviews X”.

We formulate the Meaningful Product Answer Generator (MPAG) as follows: Given a question X9, MPAG first reads
reviews X" and attributes A, then generates an answer ¥ = {fj, 72, .. ., QTy} via editing the prototype answer Y. That
is, the generator maximizes the probability P(Y|X9,X", A) = ]—Ig1 P(y:| X1, X", A, X4, f/), where Y = {y1,y2, ..., yTy}
is the ground truth answer.
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Table 2. Comparision between PAAG and MAPG.

PAAG MAPG
Question Encoder RNN RNN
Review Encoder RNN SRU
Review Clustering - K-means
Review Reasoning - Read-Write Memory
Product Attribute Encoding  Key-Value Memory Key-Value Memory
Propotype Reader - Answer Skeleton Extractor
Decoder RNN Editing Gating
Training Stratege Adversarial Training NLL

4 MPAG MODEL

Although our previous proposed PAAG model employs an adversarial learning strategy to encourage the model to
generate meaningful answers, and that training method punishes the model when generating answers which do not
include the correct product facts, the PAAG model still tends to generate safe answers, like “ask the custom service”
or “Tdon’t know”. In this paper, we propose to explicitly introduce a natural answer pattern to the answer generation
model, which can be used when generating new answers. Moreover, to extract accurate information from the reviews
to form the answer, we propose a novel memory architecture to reason from the reviews. Then, we jointly incorporate
the answer pattern and the reasoning results in the final answer generation process. We argue that these extensions
will increase the performance of generating more accurate answers for product related questions.

Although we use the same attribute encoder (key-value based memory network) and question encoder (RNN-based

text encoder) with the PAAG model, there are three significant differences in our MPAG model compared with PAAG:

(1) The PAAG only leverages a few reviews and uses a simple attention based interaction module with the question.
And in this paper, our model uses many reviews as input and employs a clustering method and reasoning module
to extract useful information from these reviews.

(2) We incorporate prototype question-answer pair to facilitate the answer generation process, which is not used in
PAAG.

(3) We propose to use the editing gate to fuse the information from answer skeleton and reasoning result dynamically

when generating the answer.

Specifically, we show the comparison between PAAG and MAPG in Table 2.

4.1 Overview

In this section, we introduce our meaningful product answer generator model in detail. The overview of MPAG is shown
in Figure 3 and can be split into five modules: (1) Review clustering (See §4.2): We employ the K-means algorithm to
aggregate reviews into clusters. (2) Review reasoning module (See §4.3): We employ a write-read memory reasoning
framework to reason among all reviews to learn useful information from the reviews according to the question. (3)
Attributes encoder (See §4.4): We encode and extract attributes related to the question by key-value memory network.
(4) Prototype reader (See §4.5): We use a recurrent network to model the prototype context and extract prototype
answer skeleton that can be reused. (5) Answer editor (See §4.6): Eventually, we employ an RNN-based decoder to
generate the answer incorporating prototype skeleton, reasoning result, and attribute representation.
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Fig. 3. Overview of MPAG. We divide our model into five ingredients: (1) Review clustering module aggregates the review into K
clusters by using the K-means clustering method on the bag-of-word (BOW) vector of all the reviews; (2) Review reasoning module
uses a read-write memory to reason over the reviews in each cluster and produce the reasoning result; (3) Attributes encoder learns a
question-aware attribute representation; (4) Prototype reader generates an answer skeleton from prototype answer to enhance the
diversity of sentence pattern; (5) Answer editor fuses the result from previous stages by an editing gate and generates an answer.

4.2 Review clustering

Since our model takes a large number of reviews focusing on different aspects as input, processing them together
will confuse the model and make it hard to learn useful information from them. Thus, we employ a clustering step to
aggregate similar reviews into the same cluster. To begin with, we use the bag-of-word (BOW) vector to represent each
review sentence. We then employ the K-means algorithm to aggregate these reviews into K clusters. In each cluster,
if the number of reviews is less than N, we append empty review to the cluster to pad the cluster. Conversely, if the
number of reviews is larger than N, we drop some review to keep each cluster to contain exactly N reviews. These
clustering reviews can be denoted as X" = {Cy, ..., Cx}, where Cy denotes the k-th review cluster which contains N

reviews.

4.3 Review reasoning module

For each review cluster, we employ a reasoning module to conduct reasoning among the reviews in each cluster
separately. Figure 4 illustrates the whole process. In this section, we omit the subscript k of cluster index for simplicity.

For question X9, we use an embedding function e to map one-hot representation of each word x? X4 into a
high-dimensional vector space, e(xt) (The words in reviews X", attributes A, prototype question X9 and answer Y are
also embedded in this way.) We then employ a bi-directional recurrent neural network (Bi-RNN) to model the temporal

interactions between words in X7, so we have:
hl = Bi-RNNg (e(x])h? ), (1)

where hq denotes the hidden state of ¢-th step in Bi-RNN for question X9. We use the final hidden state hq of Bi-RNNg
to represent the whole question sentence X9. We here choose the long short-term memory (LSTM) as the Cell of Bi-RNN.
One can also replace LSTM with similar algorithms such as Gated Recurrent Unit (GRU) [11]. We leave the study for

future work.
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To extract the semantic features from each review, we first employ an CNN with a max-pooling operation, then apply
a Selective Reading Unit (SRU)-based RNN to obtain final representation for each review. To begin with, a list of kernels
with different width are used in the CNN operation, and their outputs are concatenated together, denoted as h;, , in
Equation 2. These different kernels capture different n-grams features. A max-pooling operation is then conducted to

extract the most salient feature from the output of CNN, shown in Equation 3:

hy, ; = CNN (e(x,rl,t)) , @)
hy, = max-pool({hy ;. ..., h;,T,” b, ®3)

where x,’l,[ denotes the ¢-th word in n-th review, T, is the length of n-th review, and h, is the vector representation of
n-th review.

Since we need to identify the salient review to give the answer of current question, the relationship between review
and question should be considered when generating the representation for each review. Inspired by GRU [11], to
further study the interactions between reviews, we establish an RNN made up of SRUs. First, in Equation 4, we fuse
the representation of question and review together. Then we conduct a dense layer on the fusion representation n;
(see Equation 5) and normalize the update gate g; over N steps using softmax function (see Equation 6). For i-th step

(review), SRU calculates an update gate g;, which is decided by question and review together, as shown in Equation 6:

n; = [h] x thq;hf;thq], 4

zj = Wo tanh(Win; + by) + by, (5)
exXpiz;

gi = p(zi) ()

SN exp(z))’
where X denotes the element-wise multiplication. Note that the review with a high g; value means that the information
of this review should be mostly retained, and will play a more important role when generating the answer. Thus, the
update gate g; can also be seen as the salience weight of i-th review.
Unlike GRU, SRU incorporates the question representation h%] into the calculation of update gate which can help
the model to identify which review has more contribute on answering current question. Then update gate g; is used in

updating the hidden state s}, shown in Equation 9:

qi = o(Wgh + Ugsl_; +bg), )
sT = tanh(W;h! + g; X Ussl_, +bs), (8)
sir:g,»Xs;.’+(1—g,-)><sir_1. 9)

We use the hidden state of i-th step s] asthe final representation of i-th review.

Now we have a more comprehensive representation s} for each review. Next, we focus on conducting reasoning
among these reviews, and we propose a review reasoning memory network with a write-read mechanism [26]. As
preparation, we initialize an empty memory matrix My € RS*# with S memory slots. Each slot is a H-dimension vector
which is set as a representation of learned information and reviews with the same information will be written into the

same slot. We use the notion m(} to denotes the j-th slot in memory Mp.

4.3.1  Writing to memory. In this section, we describe the memory writing process that writes each review representation

into memory one by one, from s to s, and the memory is updated from My to My simultaneously. In each step, MPAG
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pm————— Review Reasoning - = = = = = = = = = = = === == N
Update Update Update Update,

S SO SOy S

[ Review1 ] [ ReviewZ] [ Review3] [ Review4]

Fig. 4. Overview of the review reasoning module in MPAG. In the beginning, the selective recurrent unit is applied on each review;
then retrieved information from each review is written to memory; finally, a multi-head memory reading mechanism is employed to
read the memory.

reads a review representation s] and writes it to the memory matrix M;. To update the memory matrix, this module
calculates 3 components: write weight for each slot, a write content vector, and an erase vector.

We now detail our writing process. To begin with, we calculate a write weight for i-th review, ensuring that similar
reviews will have similar write weights. The module first calculates a write key «}” € RH using a dense layer applied
on the input review representation s

k;” = Dense(s]), (10)
where the write key «;” contains the information learned from the i-th review. We obtain the write weight 71'1-‘3- € R for

the j-th memory slot m; by calculating the similarity between x;” and memory slot mé:

exp(S(x}”, mj.))

= —, (11)
YN exp(S(, mb))
where S is a similarity function that measures the relation between the write key and memory slot:
x-y
S(x,y) = —=. (12)
lxIlyl

In this way, reviews with similar semantic meanings tend to have similar write weights for each memory slot.
Next, we prepare the content which should be written into the memory, and we use write content vector v; € R to
store this content:

v; = Dense(s]), (13)
where v; € RH represents the information of current input s that should be written into memory. Then, an erase
vector E; € R is produced to decide which dimension of the memory is useless and should be erased, as shown in
Equation 14:

E; = o(Dense(s])), (14)
where o denotes the sigmoid function.
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To update the memory slot, we should first write the write content into the slot controlled by the write weight and
then erase the useless information from the memory slot. By combining write weight niwj € R, write content v; € RH ,
and erase vector E; € R¥, we update a memory slot mj. € R as follows:

i_ o i-1 wrT w_T
m; =m; X(l—ni’jEi)+7ri’jvi, (15)
where 1 € RM is an H matrix of ones. After N memory writing steps, memory matrix My stores all information

collected from this review cluster.

4.3.2 Reading memory. After we write all the review information into the memory slots, we need to read the reasoning
result from the memory to conduct answer generation. Similar to the procedure of writing memory, we calculate a
read key to decide the read weight on each slot. Inspired by Vaswani et al. [67], instead of performing one single read
function, we find it beneficial to use various read keys to address different slots in memory, i.e., multi-head reading
mechanism. We employ a dense layer to project the sy, T times to obtain the read keys {x{,...,x,...,x}}, and we use

the t-th read key «} € RH as an example to illustrate the process:
x; = Dense; (s}). (16)

On each of these read keys, we apply the similarity function S, yielding t-th read weight ] ;€ R for j-th memory slot,
shown in Equation 17:
exp(S(xf, m))
T = .
L,
TS exp(S(kl,m))

(17)

In this way, multi-head addressing allows the model to address suitable read location from different read key represen-
tation subspaces in different positions. Finally, these read weights #” are used to produce a weighted sum of memory

slots, as shown in Equation 18:

S

= m (18)
Jj=1

o =Wysy +Wrlr1®---@rr], (19)

where @ denotes the concatenation between vectors, r; € RH is the readout vector of the ¢-th read head and o” € RH is
the output of this memory reasoning module for current review cluster. Hence, the output of the reasoning module o”
can be seen as the representation of reasoning result in this cluster of reviews with respect to the question. Recall that
we have aggregated the reviews into K clusters, we now again add the cluster index k in following sections and use

notion olz to represent the reasoning result in k-th cluster.

4.4 Attributes encoder

Key-Value Memory Network (KVMN) is shown effective in structured data utilization [32, 44, 66]. Inspired by this, in
MPAG we employ an KVMN to infer representations of the structured knowledge, i.e., product attributes. Embedding of
attribute’s key is regarded as the key in KVMN and embedding of the attribute’s value is used as the value.
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We first calculate the relevance between each attribute key and the given question. Given question X9, for the i-th

attribute a; = (af, a?) € A, their matching function A is calculated as:
exp(hl Wae(a))
q

312, exp(h], Wae(af)

Mai, XT) = (20)
where h% is question representation and W, is the parameter of linear transform which converts h% and e(ai.c ) into
q q
the same space.
Then, we use these matching scores to produce a weighted sum of all attribute values since an attribute with a high

matching score is more related to the question, thus should take a larger proportion in overall attribute representation:

Ta
0% = ;A(ai,xq)e(af), (21)

where 0? is the output of KVMN and will be used to guide the answer generation.

4.5 Prototype reader

To tackle the “universal answer” problem, in this paper, we employ the prototype editing method to generate the answer
by editing the prototype instead of generating answer from scratch. As introduced in §1, the prototype question-answer
pair is retrieved according to its similarity to the current question. A prototype answer X7 and a prototype question
Y are given to our prototype reader to assist the generation process. Prototype reader in MPAG learns to extract the
answer skeleton, i.e., template words in the prototype answer that are not highly related to the prototype question, to be
reused in generating the new answer to increase the diversity of sentence pattern. We first employ Bi-RNN to model

the temporal interactions between words in prototype question X7 and answer Y:

h{ = Bi-RNNg(e(x]), ), (22)
h¢ = Bi-RNNg (e(fjr), h%,), (23)

where fz? and ;l? denotes the hidden state of ¢-th step in Bi-RNN for t-th word in X7 and Y respectively.

We then employ an attention mechanism to analyze the dependency between fl? and fl? to learn answer skeleton.
Then the dependency will be used to extract the answer skeleton from prototype answer which is not highly related
to the prototype question. The attention is derived from a shared similarity matrix D € RTe*Tv, which is calculated
by each word of prototype question X9 and prototype answer Y. D; j here indicates the similarity between the i-th
question word 32? in the question and the j-th answer word §j; in the answer and is computed as:

Dyj = a(hl,h%),
(24)
a(xy) =wTx@y® (xxy)],
where « is a trainable scalar function that encodes the similarity between two input vectors. We let d; = mean(D.;) € R
represent the attention weight on the t-th prototype answer word by prototype question words, and multiply with the
corresponding prototype answer hidden state he, resulting in an answer skeleton, ﬁ? In this way, the module assigns

high importance weights to the words which can be reused in a new answer.
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Fig. 5. An overview of the answer editor. In this module, we incorporate reasoning result, answer skeleton and product attribute into
generating the answer.

4.6 Answer editor

To generate a diverse and meaningful answer, we propose an RNN-based decoder which incorporates outputs of
reasoning result, answer skeleton, question, and attributes. Figure 5 illustrate the framework of the answer decoder. To
force the decoder focus on the current question and product, we first apply a linear transform on the concatenation of
question vector representation h; and attributes 0%, and then use this vector h;) as the initial state of the LSTM shown

q
in Equation 25. The ¢-th decoding step is shown in Equation 26:
by =W, [thq ® o“] + be, (25)
By =1ST™ (hi_y. [¢f_, ® e(wi-1)]). (26)

where W,, b, are trainable parameters, h; is the hidden state of ¢-th decoding step, c?_l is the context vector produced
by the standard attention mechanism [3] over the hidden states h? of question. To dynamically fuse the answer skeleton
and reasoning result into the generation process, we come up with an editing context vector cf and a memory context
vector c*.

Editing context vector c§ is used to dynamically collect useful prototye information from answer skeleton according

to current decoding state. We first show how editing context vector c{ is calculated from answer skeleton, as shown in
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Equation 27-29:

exp(f(h% b))

it = L (27)
5" exp(F(h, By))
F(RY hy) = By Wi, (28)
Ty
cf = 8k, (29)
J

where flf is the i-th hidden state in the answer skeleton, f is a bi-linear matching function which models the relationship
between current decoding state h/t and each hidden state l:l? of answer skeleton.
As for memory context vector, remember in §4.3, there are K reasoning results for each cluster {o{, el o%}. We thus

employ a dynamic fused method to produce a context vector of all the reasoning results:

exp(f (o}, hy))

R SRR (30)
I exp(f (0], hy)

€kt

K
o= ejeol, (31)
J

where f is the same function used in Equation 28 with different trainable parameters.

In each decoding step, we use an editing gate to decide which information should be used in generating current word
between prototype words and reasoning result. And editing gate is used as an threshold to adjust the proportion of
editing context vector and memory context vector. Now we show how to combine edit context vector ¢ with memory
context vector c¢}* by an editing gate y;. y; € R is determined by decoder state h/t and is used to decide the importance
of edit and memory context vectors at ¢t-th decoding step, shown in Equation 32. And then we mix the editing context

vector and memory context vector together using editing gate as shown in Equation 33:
Yr=o (Dense(h;)) , (32)
c{ = [)/tc;" ®(1-y) cf] , (33)

where o denotes the sigmoid function, and cf dynamically mixes the information of memory and edit context vector.

Intuitively, to generate the answer word, there are three parts of information sources should be incorporated into
generation process: prototype and reasoning result, current question and decoding state. Finally, we concatenate cf
with question context vector c? and decoder hidden state h; and apply a fully-connection layer on these vectors. Then,

we predict the output word distribution P, over all the words:
O = Wy[h, & c] @ cl]+b,, (34)
P, = softmax (Wyh{ + by) . (35)

where W,, Wy, by, by are all trainable parameters. Our objective function is the negative log likelihood of the target

word y;, shown in Equation 36:
Ty

L=- Z log Py (yy). (36)
t=1

We employ the gradient descent method to update all parameters to minimize this loss function.
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5 EXPERIMENTAL SETUP
5.1 Research Questions

We list four research questions that guide the remainder of the paper:

(1) RQ1 (See §6.1): What is the overall performance of MPAG? Does it outperform state-of-the-art baselines?

(2) RQ2 (See §6.2): What is the effect of the review clustering in MPAG?

(3) RQ3 (See §6.3): Does the saliency score (calculated in Equation 6) explain why the generated answer holds the
corresponding opinion?

(4) RQ4 (See §6.4): Can the answer editor in MPAG learn a useful answer skeleton?

5.2 Dataset

We conduct experiments on a large-scale real-world product aware question-answering dataset proposed by Gao et al.
[24]. This dataset is collected from JD.com, one of the largest e-commerce websites in China. On this website, users
can post a question about the product. Most questions are asking for experience of the user who has already bought
the product. This dataset is available at https://github.com/gsh199449/productqa. It includes question-answering pairs,
a large number of reviews, and product attributes. Most questions in the dataset are about personal user experience.
In this paper, The only difference from [24] is that, rather than using BM25 to select a small number of review for
each question, we retrieve up to 100 relevant reviews to obtain more information. We also follow the retrieval method
proposed by Wu et al. [76] to collect a prototype question-answer pair for each question. We remove all QA pairs
without any relevant review and split the whole dataset into training and testing sets. In total, our dataset contains
cover 469,953 products from 38 categories. We use all the training dataset as our retrieve database. The average review
and attribute numbers of a product are 59.1 and 9.0, respectively. The average lengths of a question and ground truth

answer are 9.03 and 10.3 words, respectively.

5.3 Evaluation Metrics

To evaluate the methods, we employ BLEU [47] to measure the lexical unit overlapping (e.g., unigram, bigram) between
the generated answer and ground truth. Following [24, 56, 63, 80], we also use embedding-based metrics [16] (including
Embedding Average, Embedding Greedy and Embedding Extreme) to compute their semantic similarity. Besides, to
quantitatively evaluate the safe answer problem, we use the distinct metric [39], which evaluates the diversity of the
generated answers by calculating the number of distinct unigrams and bigrams.

Since only using automatic evaluation metrics can be misleading [58], we also conduct human evaluation. Three
annotators are invited to judge the quality of 100 randomly sampled answers generated by different models. These
annotators are all well-educated Ph.D. students and are all native speakers. Two of them have a background of NLP
while another annotator does not major in computer science. The statistical significance of two runs is tested using a

two-tailed paired t-test and is denoted using #(or V) for strong significance for & = 0.01.

5.4 Comparisons

To prove the effectiveness of each module, we conduct ablation studies as shown in Table 3. We remove each key
module in our proposed model, and then form three baseline methods MPAG-P, MPAG-M, and MPAG-K. Due to the fact
that our review reasoning module takes inspiration from DNC [26], we also use the original DNC network to replace
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Table 3. Ablation models for comparison.

Acronym Glossary

MPAG-P w/o Prototype answer

MPAG-M w/o Memory module

MPAG-K w/o K-means Clustering

DNC Replace Review Reasoning with DNC
SDNC Replace SRU with LSTM

our review reasoning module (shown in §4.3) as a baseline method, named as DNC. To examine the effectiveness of SRU
compared with LSTM cell [26], we replace SRU with the LSTM cell, named as SDNC.

Apart from the ablation study, we also compare our model with the following baselines:

(1) BM25 is a bag-of-words retrieval function that ranks a set of reviews based on the question terms appearing in
each review. We use the top review of the ranking list as the answer.

(2) TF-IDF (Term Frequency-Inverse Document Frequency) is a numerical statistic that is intended to reflect how
important a question word is to a review. We use this statistic to model the relevance between review and
question and select the most similar review as the answer of the question.

(3

~

S2SA is the Sequence-to-Sequence (seq2seq) framework [61] which has been proposed for language generation
task. We use the seq2seq framework which is equipped with the attention mechanism [3] and copy mechanism [27]
as a baseline method. Attention mechanism [3] has been proposed to tackle the alignment between the input
sequence and the generated sequence. Copy mechanism [27] has been widely used in the text generation task to
tackle the OOV problem, which can copy some words from the input sequence when generating new text. The
input sequence is a question and the ground truth output sequence is the answer.

(4) S2SAR is a simple method which can incorporate the review information when generating the answer. Different
from the S2SA, we use an RNN to read all the reviews and concatenate the final state of this RNN with encoder
final state as the initial state of decoder RNN.

€

~

SNet [62] is a two-stage state-of-the-art model which extracts some text spans from multiple documents context

and synthesis the answer from those spans. Due to the difference between our dataset and MS-MARCO [46],

our dataset does not have text span label ground truth for training the evidence extraction module. So we use

the predicted extraction probability to do weighted sum the original review word embeddings, and use this

representation as extracted evidence to feed into the answer generation module.

(6) QS is the query-based summarization model proposed by Hasselqvist et al. [31]. Accordingly, we use product
reviews as an original passage and answer as a summary.

(7) PAAG is the product-aware answer generation model proposed in our previous work [24].

(8) Proto is the prototype editing response generation model in dialog generation task proposed by [76].

(9) Re3Sum is the text summarization model [8], which retrieves summaries and conducts template aware summary

generation.

(10) RAGE is a review-driven e-commerce question answering model using convolutional sequence generation [9].
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Table 4. Automatic evaluation comparison with baselines.

BLEU BLEU1 BLEU2 BLEU3 BLEU4

Text generation methods

S2SA 1.62 15.48 3.14 0.83 0.17
S2SAR  1.75 15.17 3.22 0.91 0.21
RAGE 0.22 8.58 0.72 0.05 0.01
SNet 0.96 13.70 2.54 0.40 0.06
s 1.68 15.50 2.95 0.83 0.21
Proto 2.83 21.80 5.36 1.33 0.41
Re3Sum 2.83 22.03 5.62 1.50 0.34
PAAG 2.02 16.22 3.57 1.03 0.28
MPAG  3.96* 24.25% 6.68% 2.094 0.734

Sentence extraction methods
BM25 0.41 6.96 0.71 0.13 0.04
TF-IDF 0.25 5.55 0.51 0.08 0.02

Table 5. Embedding scores comparison between baselines.

Average Greedy Extrema

Text generation methods

S2SA 0.410013 98.653415 0.269461
S2SAR  0.419979 99.742679 0.278666
SNet 0.397162 95.791356 0.277781
(o 0.400291 93.255031 0.252164
PAAG 0.424218  103.912364  0.288321
MAPG 0.526868% 139.3584% 0.4320374

Sentence extraction methods
BM25 0.325946 76.814465 0.172976
TF-IDF 0.308293 85.020442 0.155390

5.5 Implementation Details

All parameters in our model are randomly initialized. The number of K-means cluster is set to 3. The maximum number
of reviews in each cluster is 20. The RNN-based networks have 512 hidden units and the dimension of a word embedding
is 256. We limit the length of the question and answer sentence to 25 words and review sentence to 30 words. The beam
search algorithm is employed with a beam width of 4. We use Adagrad [15] to update the parameters with a learning
rate of 0.1 and training batch size of 64. Our model is implemented via TensorFlow [1] framework and trained on an
NVIDIA GTX 1080 Ti GPU.

6 EXPERIMENTAL RESULT
6.1 Overall Performance

At the beginning, we address the research question RQ1. In the Table 4, the significant differences are with respect to
PAAG (row with shaded background). In these experimental results, we see that PAAG achieves a 111% increment over
the state-of-the-art question answering baseline SNet in terms of BLEU, which demonstrates the effectiveness of using
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adversarial training method and incorporating product attributes. For our newly proposed model MPAG, we can see
that MPAG achieves a 93.18% increase over the state-of-the-art baseline PAAG in terms of BLEU, and the improvements
are all significant (with p-value < 0.05). As for the prototype-based baselines Proto and Re3Sum, they all outperform our
previously proposed model PAAG. This suggests that introducing prototype answer and employing the novel memory
network can help the model to generate better answers. Despite the prototype-based methods obtain the help from the
prototype question-answer pairs, these methods can not beat our proposed MPAG, since they fail to fully utilize the
prototype answer due to their lack of reasoning ability.

We also employ the embedding metric [16] as another automatic evaluation metric which goes beyond simple N-gram
matches. From this experiment, we can find that MAPG achieves a 24.20% increase over the state-of-the-art baseline
PAAG in terms of Average, and the improvements are all significant (with p-value < 0.05). The embedding-based metric
measures the semantic matches between the generated answer and ground-truth answer, and this suggests that our
newly proposed model can generate answers with high semantic consistency with the ground-truth answer.

For human evaluation, annotators rate each generated answer according to two objectives: (1) Consistency: Is the
meaning of the answer consistent with the question? (2) Fluency: Is the generated answer well-written? The rating
score ranges from 1 to 3, with 3 being the best. The results are shown in Table 6, and MPAG outperforms PAAG by
4.0% and 10.3% in terms of fluency and consistency. The paired student t-test demonstrates the significance of the
above results. The kappa statistics are 0.56 and 0.53 for fluency and consistency respectively, which indicates moderate

agreement between annotators’.

6.2 Effect of Clustering

In this section, we address the research question RQ2. To verify the effectiveness of the review clustering, we randomly
aggregate the reviews into three clusters instead of using the K-Means algorithm, and feed the review clusters to the
model named MPAG-K. The automatic evaluation results in Table 7 show that the performance of MPAG-K decreases
by 4.75% compared with MPAG, in terms of BLEU1. This demonstrates the necessity of clustering reviews into the

corresponding aspect.

6.3 Effect of Reasoning Module

Next, we turn to the research question RQ3. In addition to the ablation study in Table 7, where MPAG-M decreases by
9.63% compared with MPAG in terms of BLEU, we also compare reasoning module with DNC and SDNC. The fact that
SDNC performs better than DNC demonstrates that vanilla DNC is not suitable for this scenario though it consists of
complicated structures such as temporal memory linkage and dynamic memory allocation. However, SRU further
improves the BLEU score by 12.24%, compared with SDNC, which further verifies its superiority.

Note that, in §4.3, the SRU-based network learns to assign high weights to reviews that contain more useful
information related to the question, and thus the saliency weight makes MPAG an explainable answer generator. Next
we conduct two experiments to examine whether the saliency weight can faithfully reflect the importance of each

review.

6.3.1 Visualization of Salience Weight. We first visualize the saliency weights of a review cluster in Figure 6 and

determine whether it is in accordance with human intuition. The darker the color, the more important the corresponding

!Landis and Koch [36] characterize kappa values < 0 as no agreement, 0-0.20 as slight, 0.21-0.40 as fair, 0.41-0.60 as moderate, 0.61-0.80 as substantial, and
0.81-1 as almost perfect agreement.
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Table 6. Human evaluation comparison with main baseline.

Fluency Consistency Correctness

PAAG 275 2.52 69.0%
MPAG  2.864 2.784 91.0%*

Table 7. Automatic evaluation comparison between ablation models.

BLEU BLEU1 BLEU2 BLEU3 BLEU4

MPAG-P 2.13 19.47 4.14 1.03 0.25
MPAG-M  3.61 23.04 6.37 1.95 0.59
MPAG-K 3.54 23.15 6.35 1.82 0.58
DNC 3.41 22.69 6.10 1.72 0.57
SDNC 3.53 23.28 6.29 1.81 0.58

Table 8. Diversity evaluation comparison with baselines.

Distinct-1 Distinct-2  Distinct-3  Distinct-4

PAAG 0.0310 0.1129 0.2299 0.3495
Re3Sum 0.0291 0.1299 0.2826 0.4429
Proto 0.0273 0.1364 0.2946 0.4535
RAGE 0.0377 0.0476 0.1945 0.4439

MPAG 0.0392 0.1902 0.3959 0.5763

!!;!!;!234!678910

Fig. 6. Visualizations of salience weights over several reviews. The number is the review index and the review contents are listed in
Section 6.3.1.

review. For the top figure in Figure 6, the question is “F5% i & /& 4 F£” (What is the quality of this fishing rod?). The
second review is “STEIRIF, FRENEE, 115 (The quality of the fishing rod is very good, feeling good, lightweight)
and has the highest weight, while the sixth review is “@)fCME], E—%—, FELERE, WK, FHEE
HEHHE R (Product received, buy one get one free. The handcuffs are light and soft. I will examine the
quality when I have time to fish), which has the lowest weight. This is consistent with human intuition.

In the bottom of Figure 6, the question is “RZ u 153X B AT 14§15 ? L HZFEA 1 77 (Do you think this
razor can shave cleanly? Especially the corners of the face). We can see that the fifth review has a higher weight than
the seventh review. The fifth review is “IE25Z AKIFLY), EFEF, PR T [ use it as the gift for husband, very
good, shaved very cleanly) and the seventh review is “$ITUIRIER, FAMIHMMRITT, FIZITIEEHEERN, REWX
F” (The razor is very beautiful, easy to use, it is great, I like it very much). We can easily see that, the fifth review is
more useful than the seventh with respect to the question.
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14. 0%

R, more useful than Ry
both useful

49 5% 26 2% Rp more useful than R,

both useless

10. 3%

Fig. 7. Pairwise explanation annotation result.

B = , R R
OK  Wear Very Comfortable

Fig. 8. Visualization of editing gates. The darker the color is, the more information of this word comes from reasoning context vector.

6.3.2 Quantitative Usefulness Evaluation. 1t is intuitive to conduct a pairwise evaluation on whether our high weight
reviews are as helpful as the rated useful ones selected by metrics based on word similarity such as BM25. Hence, we
randomly select 100 data samples from two groups of reviews for comparison. Specifically, we choose the review with
the highest weight score selected by MPAG (R;) and BM25 (R},), along with the question. The order of these two reviews
is randomly shuffled and four choices are listed to annotators: (1) R, is more useful than Ry; (2) Ry, is more useful than
Rg; (3) R, and Ry, are almost the same, both useful; (4) R; and Ry, are almost the same, both useless.

The pairwise evaluation results are shown in Figure 7. For 49.5% of data samples, R, is more useful than R,. For
10.3% of data samples, the annotators think both reviews are useful and find it hard to judge which is better. Finally,
only 14% of data samples, the given explanation is useless. Therefore, we conclude that, in most cases, MPAG achieves

good performance in providing explanations.

6.4 Effect of Answer Editor

Lastly, we address the research question RQ4. In Table 7, compared with MPAG, the performance of MPAG-P drops most
by 24.61% in terms of BLEU1. This observation suggests that prototype question-answer pairs are helpful, and our
model successfully learns how to utilize them. To examine whether the prototype method can alleviate the safe answer
problem, we first evaluate by the distinct metric as shown in Table 8. MPAG outperforms the main baseline PAAG by
26.45% and 68.46% in terms of Distinct-1 and Distinct-2, respectively. Furthermore, human evaluation is also conducted
to evaluate the proportion of safe answers in generation results. About 25% of the PAAG outputs are the safe answers,
while our model produces only 20% safe answers, a great decrease. Nearly 95% of answers generated by our model
are distinct, which makes our model far more practical than PAAG. Moreover, the corresponding kappa score for the
inter-annotator agreement is 0.37. The above experiments demonstrate MPAG is indeed helpful for alleviating the safe
answer problem.

Since the prototype context improves the performance of MPAG by such a large margin, it is possible that the prototype
answer is already a good answer to the question, and MPAG directly copies the prototype answer as output. To examine
whether the improvement is brought by the prototype answer or the prototype editing module, we calculate the BLEU

scores between the prototype answer and the ground truth answer, and obtain 2.74, 18.63, 4.34, 1.21, 0.58 in terms of
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Table 9. Examples of the context and answers.

TRSEH, FTLVEIFFK, KT
(Very practical, can be filled with boiled water, I bought two)

. NS TR — TN
R . . . .
eviews (This cup does not leak water, and it does not leak either when you use boiling water to make
tea.)

TP — IR T !
(I used this cup to fill the water twice, and the bottom of the cup broke when I opened the water
for the second time!)
HFRER, fIAKERRT
(The cup is very beautiful, and using this cup to put the boiling water will not burn your hands.)
PO, ORFRAIKRT —T, BGERT
(This glass is very thin. I bought it and washed it with boiling water. Then I put it away.)
Attributes Dfe I E, 6. TTEEM, B 0, Ak BE, £0E: 1 1, 703K B, A&
301-400ml ( Function: glass cup with a cover, Color: colorless, transparent, Domestic / Import:
Domestic, Shape: round, Quantity: 1, Category: Glass, Capacity: 301-400ml )
Prototype question | AJANA] LLAAE ML
(Can it be used to put pig blood?)
Prototype answer | A] DL, HIRAT LA
(Yes, of course.)

Question A LR KBRS
(Can I use this cup to put boiling water and make tea?)
Reference T L
(Yes, you can.)
PAAG AL, BRI K
(No, I put boiling water in it.)
MPAG SIRATLL, Tt AT K

(Yes, of course, I use this cup to put boiling water.)

BLEU and BLEU1 to BLEU4, respectively. In contrast, the scores of MPAG are 3.96, 24.25, 6.68, 2.09, 0.73, i.e., higher
than the scores obtained by the prototype answer, in all metrics. This means that the original prototype answer is not
good enough and our answer editor module has an efficient revision ability.

To further investigate the editing module, we visualize the editing gates y; in Equation 33 and randomly pick one
case, as shown in Figure 8. The question for this sample is “T%, —XK/NH G, FEH140fT, HRFLBEENE?
(My height is 1.65 meters, and my weight is 150 kg. Can I wear it?) and the prototype answer is “H8” (It is ok). The
generated answer is “BEZE, fR&TAR” (It is ok to wear, very comfortable). In Figure 8, we can see that the last word “&7
X" (comfortable) has the highest editing weight, which is consistent with the fact that comfortable is a reasoning result

=)<

from reviews. In contrast, the first word “Fg” (ok) has a low editing weight, because it can be directly copied from the

prototype answer.

6.5 Case Study

We also show a case study in Table 9, which includes a question, representative reviews, prototype question-answer
pair, and answers generated by different models. MPAG adapts the prototype answer to the new context and generate
the answer, which is a correct answer proved by user experience. In contrast, PAAG gives the answer “no” and then
generates “I put boiling water in it”, that makes up an inconsistent sentence confusing the readers. We can see that the

generated answer of our MPAG can effectively generate reasonable and fluent answers.
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7 CONCLUSION

In our previous work, we propose the task of generating answers of product-related questions using custom reviews and
product attributes, and we also propose an adversarial learning method which employs an attention-based review reader
to extract question-aware facts from reviews and attributes and finally generate an answer. Although the Wasserstein
distance-based adversarial learning method is used to training the model which can reduce the probability of generating
meaningless answers, the model still tends to generate safe answers. And the model lacks of reasoning ability when
extracts facts from custom reviews, which is necessary for generating accurate answer.

Motivated by these observations, in this paper, we proposed the Meaningful Product Answering Generator (MPAG),
which aims to generate a meaningful and diverse answer based on product attributes and reviews. Specifically, we
employed a clustering algorithm to aggregate the reviews into several clusters, then we used a selective reading
mechanism and read-write memory to encode these reviews so as to reason among them. We also used a key-value
memory network to encode the product attributes. To alleviate the safe answer problem, we incorporated a prototype
question-answer pair to extract answer skeletons. Finally, we combined all the intermediate results into an RNN-
based decoder to generate the answer. Extensive experiments on a large-scale, real-world dataset showed that MPAG
outperforms the state-of-the-art baselines and verified the effectiveness of each module in MPAG. Besides, pairwise
experiments demonstrated that MPAG is able to provide a reasonable explanation why the generated answer holds
such an opinion.

In future work, we are looking forward to introducing user profile features to the model to provide personalized

services.
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